
Department: Head
Editor: Name, xxxx@email

Approximating region
boundaries based on
qualitative and quantitative
information
Zhiguo Long
School of Computing and Artificial Intelligence, Southwest Jiaotong University, China, 611756

Michael Sioutis
Faculty of Information Systems and Applied Computer Sciences, University of Bamberg, Germany,
96047

Qingqian Li
School of Computing and Artificial Intelligence, Southwest Jiaotong University, China, 611756

Hua Meng
School of Mathematics, Southwest Jiaotong University, China, 611756
(Corresponding author: menghua@swjtu.edu.cn)

Heng-Chao Li
School of Information Science and Technology, Southwest Jiaotong University, China, 611756

Abstract—Approximating regions is a topic that can have important applications in artificial
intelligence whenever uncertain, incomplete, or inconsistent/contradictory spatial information is
involved. This paper devises a new method to generate region approximations based on rough
qualitative direction and distance information. The main idea is first to give a suitability score to
smaller regions, cells, that are obtained by partitioning the area of interest, and then to identify
candidates to form an approximation by evaluating score contribution ratios under a certain
threshold. This paper designs a novel mechanism that compares the actual information of cells
with the provided rough information in order to calculate suitability scores, and proposes to
exploit a regressor model that can predict a threshold given certain suitability scores.
Experimental results show that, given a good threshold, this new method can approximate target
regions effectively, and that good thresholds can be reliably obtained through a trained
regressor.
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NATURAL language-based spatial information
has always been common and played an im-
portant role in applications, such as place de-
scriptions in web documents and social media
texts, and instructions with spatial expressions for
collaborative building tasks. In fact, as observed
in the literature, e.g. [1], generating geometric
depictions out of natural language descriptions
could facilitate decision making in many situ-
ations; for example, automatically generating a
sketch map from text descriptions can be critical
for emergency response, as seen in [2, Figure 12],
which illustrates an application for emergency
call services. Approximating regions naturally
also extends to domains and applications that
make use of regions for representation of and/or
reasoning with uncertain knowledge, as is the
case with probabilistic spatio-temporal knowl-
edge bases for instance [3], where regions are
spatially and temporally related with other objects
over probability intervals, e.g., an object can be
inside a region at a given point of time with prob-
ability in a certain interval [λ, u]. Clearly, as with
all of our aforementioned examples, regions may
not always be provided, and may need to be ap-
proximated on the basis of incomplete, uncertain,
and even inconsistent/contradictory knowledge.

Motivation The problem considered in this ar-
ticle is to approximate or delineate a region when
given some vague natural language descriptions.
This problem could be encountered in many im-
portant applications. Specifically, the work dis-
cussed here could contribute to detection and
monitoring systems that are based on volunteer
public reporting of fires via mobile/smart phone
calls, which are becoming increasingly common
for detecting fires early [4, Section 2]; we explain
as follows. Suppose there is a wildfire and several
people saw smoke and posted it on social media
like “Bushfire burning about 7km northwest from
Yallourn North”,1 and “I saw fire about 11km
northeast from Moe”, without providing the exact
location information of the fire. Figure 1 illus-
trates such a situation. It should be noted that
the distance and direction information here is just
an estimation, and by no means accurate, and

1See, e.g., https://twitter.com/andrew lund/status/
1091210815011614721 from Twitter.
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Figure 1. Illustration of locating a region by natural
language descriptions, with the help of the region
approximation method proposed in this article.

the approach proposed in this article takes such
inaccurate information into consideration and is
reasonably robust to it (cf. Figure 6). Based on in-
formation from the above non-expert descriptions,
an approximation region for the wildfire location
will then be automatically generated by our ap-
proach. With this approximation region, there is a
variety of possibilities, such as helping with fire
detection, suppression, engagement, evacuation,
and so on. For example, warnings could be gen-
erated automatically by calculating intersections
of geometric representations of roads, towns, or
power stations with this approximation region of
fire, like “the road could be blocked by fire and
the public should reconsider their travel plan”;
authorities and other involved parties (e.g., news
agencies) could also use the approximation re-
gion to better illustrate the affected area of the
fire. The above settings are also common for
other emergency situations, e.g., sudden terrorist
attacks might be witnessed by people around,
who would proceed to post statements on social
media like “someone was shot, less than 1km
north from the square”. Social media companies
or other agencies could automatically share this
kind of information visually and rapidly with the
approach proposed in this article, which is more
intuitive and clear than pure text and can thus
better help others understand and deal with the
situation.

Contribution Previous methods mostly con-
centrated on delineating a region by using points
that are known to be contained or not in the
region [5], [6], [7], [8]. Other works considered
generating sketch maps from natural language
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descriptions involving qualitative spatial relations,
but the end result is a very rough region ap-
proximation based on rectangles that is much
more inaccurate than the one proposed in this
paper (cf. [2, Figure 7]), and may often not
correspond to the actual spatial scene [2], [9] (in
these works, the size, shape, or distance values
have no connection to the actual ones but are
just illustrative). Here, we consider the problem
of delineating a region without the information of
points contained in the region, but by combining
vague qualitative and quantitative information,
which we argue that it is also a more realistic
approach, grounded on real-world examples such
as the ones mentioned earlier. Our experiments
show that this novel method can approximate
regions quite well by using only rough direction
and distance information.

Approach

Preliminaries
A region on the plane is a nonempty regular

closed point set, that is, a set of points that is
the same as the closure of its interior. Suppose
that there is a region a on the plane, and a set
of other k regions N(a) = {bj : 1 ≤ j ≤
k}, known as the neighbours of a. Note that a
neighbouring region bj does not necessarily share
common parts with a. Then, there will be some
qualitative directional relations between a and
each bj . Here, we consider the following eight
relations from Cardinal Relation Algebra [10]:
NW,N,NE,W,E,SW,S, and SE, representing
northwest, north, northeast, west, east, southwest,
south, and southeast, respectively. These relations
are ambiguous in that, given two regions, it is
usually hard to determine exactly what the direc-
tional relation between them is.

There will also be some distance information
between a and each neighbouring region bj . An
example of this is, “a is 19 km away from bj”.
Note that this information is also vague, as for
regions there are different ways for measuring
the distance between them, e.g., distance between
centroids, between landmarks, or even between
boundaries, and even with a fixed way of mea-
surement, the measured distance might be a bit
unreliable due to error.

In our discussion, for a region a and a set of

its neighbours N(a), we suppose that there is a
set of tuples (rj, d∗j , bj) associated with a, where
bj ∈ N(a), representing the directional relation
rj and the distance d∗j between a and bj .

Now we can define the region approximation
problem tackled in this article.

Definition 1:
The region approximation problem is to con-
struct a region A that approximates the true
(yet unknown) region a with respect to both its
location and area, given a set of neighbouring
regions N(a) and a set of directional relation and
distance tuples R = {(rj, d∗j , bj) : bj ∈ N(a)}.

For example, in some situation, one might
need to find out the approximate location and
area of a place a, but the only known information
could be that a is 1.2 km north of b, and a is 2.3
km southeast of c, where b and c are places with
known location and area. In such a situation, the
problem to be solved is exactly an instance of
the region approximation problem, with N(a) =
{b, c} and R = {(N, 1.2, b), (SE, 2.3, c)}.

Algorithms
In this paper, we propose a probabilistic way

for approximating a target region based on di-
rectional relations and distance information be-
tween its neighbours. As mentioned above, the
directional relations are qualitative and rough, at
least compared to angles that can be used for
directions, and the distance information is also
vague because of the various ways of measure-
ment and potential error in measured values. The
general idea is illustrated in Algorithm 1. First,
we need to partition the area of interest into a
set of cells (smaller regions). The area of interest
could be any area that one considers as possible to
contain the region being approximated. For each
of the cells, we can assign a score to it based on
its suitability for the given directional relations
and distance information. With the scores, we
can then identify a set of cells that form an
approximation to the region a.

To obtain a set of cells, here we choose to
partition the area of interest into a set of axis-
aligned rectangles. This algorithm actually builds
a grid of size nx×ny over the area of interest. The
cells could also be other shapes, e.g., triangles
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Algorithm 1: General procedure of the
proposed approach for approximating a
region, given direction and distance in-
formation tuples.

in : A set of direction and distance
information tuples
R = {(rj, d∗j , bj) : bj ∈ N(a)},
where N(a) is a set of reference
regions of a.

out : A set of cells that are identified
as part of the region: A.

1 begin
2 C ← getCells(); // partition

with cells C
3 foreach cell ci in C do
4 s(ci)← getScore(ci, R);

// calculate the score
for each cell

5 A← identifyCells(C, s(C));
// identify cells form
the region

6 return A;

generated by the Delaunlay triangulation of some
points. We note that as long as the cells are
small enough, then the shape of the cells will not
significantly affect the quality of approximation,
although it might affect the efficiency of obtaining
an approximation. Here, as a balance between
efficiency and quality of approximation, we set
the grid size to be nx = ny = 100. Figure 2
illustrates a partition with grid cells.

Figure 2. Illustration of constructing cells, and trans-
lating qualitative directional relations into angles.

To assign each cell a score, we need to
consider how suitable a cell is for the given

directional relation and distance information. In
particular, to measure directional suitability of a
cell, we compare the given directional relation
r with the actual directional relation between
a cell and a reference region. To this end, we
first translate the given directional relation into
quantitative angles.

As shown in Figure 2, the eight qualitative
relations NW,N,NE,W,E,SW,S,SE are trans-
lated to angles of 135◦, 90◦, 45◦, 180◦, 0◦,
225◦, 270◦, 315◦ respectively; this is based on
the model of Cardinal Relation Algebra [10].
For example, if the qualitative directional relation
between a and b is r = NE, then we use the angle
θ = 45◦ to interpret r.

To figure out the directional relation between
a cell and a reference region b, we consider the
line connecting the centroid of the cell and the
reference region, as shown in Figure 2. The angle
θi between this line and the x-axis will be used as
the quantitative representation of this directional
relation. The directional suitability of a cell is
then measured using the difference between those
angles, with cos (θ − θi) + 1. Here we added 1
to the cosine part, because we want to keep the
value non-negative. Note that the cos function has
a maximum value of 1 at 0◦ and decreases to
a minimum value of −1 when the angle goes
to either 180◦ or −180◦. This formula correctly
captures the property that when the cell has
a similar direction to what is given, then the
score of the cell is large (approaching 2), and
when the cell has a very different direction to
what is given (e.g., opposite direction), then the
difference between angles is close to ±180◦, and
thus the score is small (approaching 0). Note that
although one can use some other linear functions
instead of the cos function, cos is simple and
gives a smooth change of values. Furthermore,
by calculating cos(θi− θj) using inner products,
we can avoid calculating angles using inverse
trigonometric functions which could be inaccu-
rate and computationally inefficient.

To measure the distance suitability of a cell,
we compare the given distance with the actual
distance between a cell and a reference region.
The distance between the centroids is used as
an approximation to the actual distance. Alterna-
tively, one could also use the distance between
“nearest” boundaries, or any other reasonable
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distance. Using the distance between centroids
can be seen as a compromise between accuracy
and efficiency. Moreover, as the given distance
usually is also not accurate (due to vagueness of
natural language and inaccuracy in measurement),
it seems not necessary for the distance between
a cell and a reference region to be extremely
accurate.

The difference between the given distance d∗j
and the distance di for ci and bj , is calculated
by the (adjusted) relative error of di w.r.t. d∗j , i.e.
εi = 2 ∗ ((di − d∗j )/d∗j + 1). Then the distance
suitability of a cell ci is obtained using some
function g(εi). In order to characterize distance
suitability well, the function g should have the
following properties:

• when εi = 2 (i.e. di = d∗j ), g(εi) is the
maximum value of g, because in this case ci
has the same distance as the given one, d∗j .

• when 0 < εi < 2, i.e. ci is too close to the
reference region bj , g(εi) should drop quickly
to 0 with εi approaching 0.

• when εi > 2, i.e. ci is too far away from bj ,
g(εi) should decrease to zero as εi increases.
In this case, g should not drop too quickly,
because as di becomes larger, the same incre-
ment in di has less impact on the suitability of
ci than in the previous case.

The probability density function, w.r.t. εi, of
the χ2-distribution with 4 degrees of freedom
possesses all of the above properties. Therefore,
the distance suitability of a cell is measured by
εi ∗ e−εi/2.

The final score for a cell ci is then obtained by
multiplying the scores of ci for each bj ∈ N(a).
The whole procedure of calculating the final score
of a cell is shown in Algorithm 2.

After assigning each cell a score, we need
to identify a subset of cells to form an ap-
proximation A to the region a. Suppose that
there are n cells and each cell ci has a score
si. In order to avoid the side effect of having
different scales for our scores, we normalize all
the scores to be in the range [0, 1] by performing
si = si/S, where S =

∑n

k=1 sk. There are
many methods to identify a subset of cells. For
example, one can use a direct threshold σ, and
let A = {ci : si ≥ σ} be the approximation to
ai. Here we use a threshold σ in a different way

Algorithm 2: getScore(ci, R)
in : A cell ci. The set of

corresponding direction and
distance information tuples
R = {(rj, d∗j , bj) : bj ∈ N(a)}.

out : The score of ci.
1 begin
2 s← 1;
3 foreach (rj, d

∗
j , bj) ∈ R do

4 di ← distance between centroids
of ci and bj ;

5 θi ← angle for the line
connecting the centroids of ci
and bj ;

6 θj ← angle translated from the
qualitative directional relation
rj ;

7 εi ← 2 ∗ ((di − d∗j )/d∗j + 1);
8 s← s ∗ (εi ∗ e−εi/2 +

(cos (θi − θj) + 1)/3);

9 return s;

to filter out cells with low scores. In particular,
we use βi =

∑i

k=1 xk/S as a contribution ratio
of xi, where (x1, · · · , xn) = sorted(s1, · · · , sn)
is a descendingly sorted list of scores. Given a
threshold σ, suppose j is the smallest index such
that βj ≥ σ, then the subset of cells with score
xi ordered before xj (i.e., i < j) is identified
as the approximation. The advantage of using a
contribution ratio over a direct threshold is that it
can distinguish between cells with similar scores.
For instance, suppose that there is a list of cells
with sorted scores (0.112, 0.109, 0.101, . . . ) and
the sum S of them is 1.0, and selecting the first
two would give the best approximation result.
Then we can select the first two cells by using
the threshold σ = 0.3 on the contribution ratio,
while in the case of a direct threshold we would
have to use some σ like 0.107, which is harder
to obtain as it involves searching possible values
of σ in more significant digits.

The time complexity of Algorithm 1, with
the implementations of getCells, getScore, and
identifyCells as described in this article, is
O(mn), where n is the number of cells in C
and m is the number of neighbours in N(a). In
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particular, line 2 of Algorithm 1 takes O(n) time,
because getCells needs to go through each of the
cells once. The for loop in lines 3 and 4 needs
to iterate n times, as it checks each of the cells
in C, and for each iteration, getScore needs to
go through each of the neighbours in N(a). In
total the for loop needs O(mn) time. Line 5 of
Algorithm 1 needs O(n) time, since it compares
each of the scores of the cells to a threshold.
Therefore, the whole process of Algorithm 1
needsO(n)+O(mn)+O(n) = O(mn) time for
each region to be approximated. Since the number
m of neighbours in N(a) when approximating a
is usually a small constant, we can consider the
time complexity as O(n). As an intuition, in our
experiments, a region can be approximated within
one second on average given 10 000 cells.

Choice of threshold
The choice of a threshold will greatly affect

the result of approximation. There are several
factors that will affect the appropriate value of
a threshold: the function used to calculate scores,
the relative distance between the target region and
its neighbours, the choice of the area of interest,
the size of regions, and many others. We observe
that for similar scene settings the threshold will
also be similar.

For example, consider the three cases in Fig-
ure 3. This observation inspires us to consider
the scores as features and make use of machine
learning techniques to discover any similarity
between them and exploit such information.

Specifically, suppose that there are n cells and
each cell cj has a score sj . As before, we will nor-
malize these scores and obtain (x1, · · · , xn) =
sorted(s1, · · · , sn), a descendingly sorted list of
normalized scores, which is then used as a feature
vector for applying machine learning techniques
to obtain a proper threshold for identifying the
cells. One can also apply dimensionality reduc-
tion or feature selection techniques, such as Prin-
cipal Component Analysis, to the list of scores,
so that the lengths of lists of scores are the same,
and noises in data can be reduced. However, this
will not be applied in our evaluations.

To obtain a set of training samples, we need
to first get proper thresholds for different feature
vectors of scores. The method we use here is to
perform a search of a threshold from 0.01 to 1.00.

(a) (b)

(c)
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Figure 3. Distribution of cell scores for different tu-
ples. For (a) and (b), the target region has similar size
with the neighbouring regions, and the associated
distances are not very large, i.e., the target region is
not far from any of the neighbouring regions, and, for
(c), the size of the target region is smaller than that
of any of the neighbouring regions, and the distances
are relatively larger too. In (d) we show the first 2 000
largest normalized cell scores for each of the previous
three cases. It can be seen that the distributions of
cell scores of (a) and (b) are indeed similar, and
are also different from that of (c). This suggests that
differences in scene settings can be distinguished by
monitoring the distribution of cell scores.

To measure the properness of a threshold, we will
need to check how accurately A approximates a.
The accuracy of the approximation is measured
by adapting the well-known Jaccard similarity
measure:

acc(A, a) =
area(A ∩ a)
area(A ∪ a)

. (1)

In this way, for each list of scores, we identify a
proper threshold that maximizes acc(A, a).

The problem of identifying a proper thresh-
old, given a list of scores, is then modelled
as a regression problem. We can apply various
well-established algorithms to solve this problem.
Here, we consider using nearest neighbour regres-
sion [11], but other algorithms, e.g., decision tree
regression and ridge regression, are also feasible.
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The idea of nearest neighbour regression is:

1) Training: record the feature vectors and
corresponding thresholds in the training set.

2) Predicting: for a new feature vector, find its
k nearest neighbouring feature vectors, with
thresholds σ1, · · · , σk; return the predicted
threshold σ = f(σ1, · · · , σk).

In this way, given a list of cell scores, we
obtain a prediction model for appropriate thresh-
old selection. In the next section, we will evaluate
how this model performs for different region sets.

Results and discussion
Region sets and settings

Two publicly available sets of regions were
considered in the experiments, namely, “Ger-
many” (G), which consists of 435 administrative
regions, and “China (subset)” (CS), which con-
sists of 416 administrative regions.2

From these two region sets, we prepared dif-
ferent sets of region pairs in the form (a,N(a)),
where a is a target region and N(a) a set of
its neighbours. Particularly, we use “[Region-
set] [X]S3” to represent a set of region pairs,
where for each region in the corresponding “[Re-
gion set]” (CS or G), we consider its top 10
nearest neighbours with respect to the distance
of their centroids, and from these 10 neighbours,
we select the first (F), middle (M), or last (L)
three nearest (“[X]” ∈ {F,M,L}), or randomly
select any three in the 10 neighbours (“[X]” =
R), as neighbours in N(a); when “[X]” = RT3,
it means that we repeated the random selection of
any three of the 10 neighbours for 3 times, which
should reduce the effects of statistical noise.

In most of the evaluations in the sequel, for
each pair (a,N(a)), we will consider the area of
interest as the minimum bounding rectangle of
the regions in {a}∪N(a), and set the size of the
grid to 100× 100 unless otherwise specified.

Approximation results
The baseline method to compare is the one

(denoted by FanFit) in [12], which is the only
comparable method with similar settings. We
measure the performance of an approximation

2Germany and China administrative region region sets were
derived from GADM (https://gadm.org/data.html).

algorithm by its accuracy as it is defined in Equa-
tion 1. For each pair in a region pair set, we check
the accuracy score of an approximation to the
target region, obtained by using the direction and
distance information from the neighbour regions.
For our method, as an approximation is deter-
mined by a threshold, for each pair (a,N(a)),
we first search for an appropriate threshold in the
range [0, 1], with a step size of 0.01, and then
for the resulting threshold σ0 with the highest
approximation accuracy, we search in the range
[σ0−0.05, σ+0.05] with a step size of 0.001 to
identify a finer threshold. The corresponding ap-
proximation accuracy given by the finer threshold
of a region pair is then used as the accuracy score
for that pair.

Figure 4 shows the accuracy scores for each
of the region pair sets of the region sets CS and
G; the results of the method in [12] are coloured
gray. As the results between the two region sets
are similar, the analysis in the following will
focus on the region set CS, yet we note that it
also applies to the region set G.

Generally, the average accuracy score of our
approximation algorithm is around 0.6, with sev-
eral approximations having accuracy score as
high as about 0.8, while the average score of the
baseline (FanFit) is only around 0.2 to 0.3. One
should note that an approximation to a region is
formed by a set of grid cells, which is relatively
rough compared to the original representation of
the target region. In fact, with grid cells, even
using the regularization of a target region a,
i.e., {c : c ∩ a◦ 6= ∅}, as the approxima-
tion, will only yield an average score of 0.841.
Nevertheless, with an average accuracy score of
0.6, an approximation generated by the proposed
algorithm on average can cover about 80% of the
target region, for all of the pair sets, and about
80% of an approximation coincides with the
target region (so, an approximation is similarly
sized and shaped). Moreover, as we only have
very limited information to approximate a target
region, it is natural that the detailed shape of
the target region cannot be accurately captured,
which results in a lower accuracy score compared
to the one provided by regularization. Therefore,
considering the circumstances here, the accuracy
of the proposed algorithm is already very good,
indicating that a large area of the target region is
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Figure 4. Approximation accuracy boxplots for differ-
ent region pair sets in the sets of regions CS and G.

covered by the approximation.
To illustrate the effectiveness of the proposed

method, for the region set CS, we show the least
accurate approximation result, the middle one,
and the highest one in Figure 5. Even for the
worst result, the approximate region is still close
to the actual location, and has similar size to
the target region (about 60% of the target region
is covered). The middle result represents the
most frequent cases in approximation (we remind
the reader that the mean and the median values
are almost the same), and the approximation is
already reasonably good (about 80% of the target
region is covered), especially given the fact that
only vague distance and direction information is
provided.

Effect of uncertain and inconsistent information
In order to see the effects of different degrees

of uncertainty in the information provided for ap-

(a) acc = 0.157 (b) acc = 0.595 (c) acc = 0.831

Figure 5. Approximation regions (light gray), com-
pared with target regions (dark gray) and regulariza-
tion regions (thick boundaries). Neighbour regions are
also shown.

proximating a target region, we manually disturb
the distance information and relations provided
in a tuple (rj, d

∗
j , bj). In particular, regarding

the disturbance of distance information, for each
region pair (a,N(a)) in the pair set G FS3,
we generate a new set of information tuples
{(rj, δd∗j , bj) : (rj, d∗j , bj) ∈ R(a)}, where R(a)
is the original set of tuples used in previous exper-
iments, and δ is a constant value used to disturb
the distance information, e.g., δ = 1.1 means
the original distance is increased by 10%. In this
way, for the disturbance of distance information
on G FS3, we obtained 10 new pair sets by
varying the value of δ from 0.5 to 1.5 with a step
size of 0.1. As for the disturbance of direction
information, we generate a new set of information
tuples {(f(rj, k), d∗j , bj) : (rj, d∗j , bj) ∈ R(a)},
where f is a function that maps a directional
relation rj to one of its k-neighbour relations,
e.g., the 1-neighbour relations of N are NW and
NE. In this way, for the disturbance of distance
information on G FS3, we obtained 4 new pair
sets by varying the value of k from 1 to 4 with
a step size of 1 and randomly choosing one in
the k-neighbour relations. The results of optimal
approximation accuracies for these pair sets are
shown in Figure 6.

It can be seen from the figure that the accuracy
of approximation will generally decrease when
the provided information is less accurate. Also,
the performance does not drop dramatically when
the disturbance is minor, as we can see from the
results around the original one (coloured gray).
It is worth noting that for the case of distance
disturbance, when the disturbance is significant
(e.g., δ = 1.5), the best approximation accura-
cies are still around 0.8, which, to some extent,
demonstrates the robustness of the proposed ap-
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Figure 6. Approximation accuracy changes with re-
spect to the disturbance of distances and directions.

proach w.r.t. distance disturbance. As for direc-
tion disturbance, for inconsistent information, it is
expected that the performance of approximation
will decrease to some extent. For example, for a
target region a with three neighbouring regions
b1, b2, b3, and the corresponding directional re-
lations NE,SE,SW (Figure 7), we change the
relation between a and b2 from SE to NW,
which introduces significant inconsistencies with
respect to other relations too. The approximation
accuracy then decreased from 0.659 to 0.313.

This problem could be tackled by introduc-
ing methods for discovering inconsistency. For
instance, in the example above, the grid cells in
a will get very low scores from the information
provided by b2 while getting very high scores
from the information provided by b1 and b3. One
can set up some rules to detect such significant
discrepancy and thus detect and remove inconsis-

Figure 7. A case to illustrate the effect of inconsistent
knowledge.

tency.
In summary, the aforementioned results show

that the approximation algorithm works and has
promising performance to obtain good approxi-
mations to target regions, even when only rough
direction and distance information is available.

Learning a threshold
Note that in the former evaluations, an appro-

priate threshold was chosen by searching through
a list of candidate values and comparing the
resulting accuracy scores. In practice, this way
of determining a threshold will not be applicable
due to two reasons. First, it requires the geo-
metric information of the target region, which is
usually not known. Second, the search is time-
consuming, and cannot be used for applications
where time is critical. Therefore, we propose
to exploit machine learning techniques (a 3-NN
regressor, specifically) to automatically assign an
appropriate threshold for a given region pair.

We measured the performance using the fol-
lowing absolute error for predicting a threshold:

Ethres = |σ − σ∗|,

where σ is the predicted threshold for a pair, and
σ∗ is the corresponding ground-truth threshold.

We also calculated the approximation accu-
racy for each of the predicted thresholds, using
the following absolute error regarding approxi-
mation accuracy:

Eacc = |accp − acc∗|,

where accp is the approximation accuracy given
by the predicted threshold for a pair, and acc∗

May/June 2019 9
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is the corresponding ground-truth approximation
accuracy.

Figure 8 (a) shows the results for predicting
a threshold in different region pair sets in the
region set CS. Overall, the prediction of threshold

FS3 MS3 LS3 RS3 RT3S3
Pair Set
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(a) boxplot of Ethres
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Figure 8. Prediction results: boxplots showing the
distribution of Ethres and Eacc for different region pair
sets in the region set CS.

is accurate, with most of the cases having an
absolute error of less than 0.05. By comparing
the first three boxes, we can see that when the dis-
tance of neighbours to the target region becomes
relatively larger, the prediction of threshold gets
more accurate: for the three nearest neighbours,
the average absolute error is 0.046; for the three
middle nearest neighbours, the average absolute
error is 0.039, decreased by 0.006; for the three
least nearest neighbours, it becomes 0.028. The
last box illustrates a more general situation, with
an average absolute error of 0.037. The median
values are smaller than the corresponding mean
values in all of the boxes, meaning that half of the

cases have a better performance than the average.
Actually, as we can see from the boxplots, the
larger mean values are due to some rare outliers
with large absolute errors. This illustrates that
the machine learning technique can predict a
threshold that is close to the most appropriate one.

From Figure 8 (b), it can be seen that the
approximation accuracy obtained by using the
predicted thresholds can be very close to the
ground-truth, with an average absolute error of
around 0.082 and a median one of around 0.041
for CS RT3S3. Again, most cases have a small
absolute error and there are some very rare out-
liers with larger absolute errors. These results
indicate that the predicted thresholds are usually
close to optimal, and the machine learning tech-
nique for predicting thresholds works well.

Conclusion and future work
In this article, we developed a novel approach

for generating approximations to regions given
some vague direction and distance information.
This approach is shown to perform well, in
that relatively accurate approximations can be
efficiently found, and an important parameter,
namely, the threshold used to identify candidate
cells to form an approximation, can be reliably
predicted with the help of machine learning re-
gression algorithms.

Regarding future work, it would be interesting
to further explore how to deal with noisy, contra-
dictory, or missing knowledge in practice, either
via other data-driven techniques or a fuzzification
of available knowledge, or even via an interplay
of both, and how this approach can be applied to
practical scenarios like mobile robot navigation.

Acknowledgements
This work was supported by the National

Natural Science Foundation of China under Grant
61806170; the Humanities and Social Sciences
Fund of Ministry of Education under Grant
18XJC72040001; the National Key Research and
Development Program of China under Grant
2019YFB1706104; and the Fundamental Re-
search Funds for the Central Universities under
Grant 2682018CX25.

10 IT Professional



REFERENCES
1. M. J. Egenhofer, “Query processing in spatial-query-

by-sketch,” Journal of Visual Languages & Computing,

vol. 8, no. 4, pp. 403–424, 1997.

2. J. Kim, M. Vasardani, and Stephan Winter, “From de-

scriptions to depictions: A dynamic sketch map drawing

strategy,” Spatial Cognition & Computation, vol. 16,

no. 1, pp. 29–53, 2015.

3. J. Grant, C. Molinaro, and F. Parisi, “Probabilistic spatio-

temporal knowledge bases: Capacity constraints, count

queries, and consistency checking,” International Jour-

nal of Approximate Reasoning, vol. 100, pp. 1–28, 2018.

4. A. A. A. Alkhatib, “A Review on Forest Fire Detection

Techniques,” International Journal of Distributed Sensor

Networks, vol. 10, no. 3, p. 597368, 2014.

5. Avi Arampatzis, Marc van Kreveld, Iris Reinbacher,

Christopher B. Jones, Subodh Vaid, Paul Clough, Hideo

Joho, and Mark Sanderson, “Web-based delineation of

imprecise regions,” Computers, Environment and Urban

Systems, vol. 30, no. 4, pp. 436–459, 2006.

6. A. Galton and M. Duckham, “What Is the Region Occu-

pied by a Set of Points?” in International Conference on

Geographic Information Science, 2006, pp. 81–98.
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