
Compact Geometric Representation of Qualitative
Directional Knowledge?

Zhiguo Longa,b, Hua Mengc,d,∗, Tianrui Lia,b, Sanjiang Lie

aSchool of Information Science and Technology, Southwest Jiaotong University, China
bInstitute of Artificial Intelligence, Southwest Jiaotong University, China

cSchool of Mathematics, Southwest Jiaotong University, China
dSchool of Civil Engineering, Southwest Jiaotong University, China

eCentre for Quantum Software and Information, FEIT, University of Technology Sydney,
Australia

Abstract

To effectively and efficiently deal with large-scale spatial data is critical for

applications in the age of information technology. Compact representation of

spatial knowledge is one of the emerging research techniques that contribute to

this capability. In this article, we consider the problem of compactly represent-

ing qualitative directional relations between extended objects, modelled in the

Cardinal Direction Calculus (CDC) of Goyal and Egenhofer. For a large dataset

of regions, this approach first constructs a simplified geometry for each region,

which preserves CDC relations between regions, and then represents each simpli-

fied geometry compactly, so that the storage size is small while retrieving CDC

relations from the representation is still reasonably fast. More specifically, the

method called necessary cut is used to construct simple geometries, and the two

methods, viz. the polygon representation and the rectangle representation, are

devised to compactly represent the constructed geometries in cubic time w.r.t.

the size of the corresponding simple geometry. Theoretical analyses demon-

strate that the two representations, especially the rectangle representation, are

promising to have small storage size. Moreover, our empirical evaluations on

?Accepted version. Formal version available at: https://doi.org/10.1016/j.knosys.

2020.105616
∗Corresponding author
Email address: menghua@swjtu.edu.cn (Hua Meng)

Preprint submitted to Journal of LATEX Templates August 26, 2022

https://doi.org/10.1016/j.knosys.2020.105616
https://doi.org/10.1016/j.knosys.2020.105616

real-world datasets show that, for each dataset the new approach can produce

a rectangle representation that has dominant performance against the state of

the art techniques in reducing the storage size of the relations, while the average

efficiency of retrieving CDC relations based on the rectangle representation is

about the same as the fastest method in the literature.

Keywords: qualitative spatial representation, Cardinal Direction Calculus,

compact representation

1. Introduction

With the development of information technologies, more and more spatial

data are being collected for use in geographical information systems (GISs), lo-

cation based services, and many other spatial related applications [1, 2]. Qual-

itative spatial relations, such as northwest, is one of the most important infor-5

mation in such applications, where answering queries about these relations is a

central function.

Previously, especially in the field of spatial reasoning [3, 4, 5, 6], qualitative

spatial relations between objects in a spatial dataset are often represented as

a complete constraint network with nodes being the objects and labels on the10

edges being the relations. For several important applications, this complete

network representation is inefficient to process qualitative spatial information.

Consider for example the task of topological adjustment of geometric data to

satisfy a set of predefined spatial relations [7]. The efficiency of the topological

adjustment algorithm is strongly related to the number of spatial relations ex-15

plicitly given, and thus a complete network would not be ideal for representing

these relations. Another example is the task for finding a set of objects match-

ing a query specified by a set of spatial relations [8]. Clearly, the smaller the set

of specified relations is, the more efficient the matching is. The third example

is the task for retrieving a certain kind of spatial relation between two given20

objects. A complete network of relations that is large in size definitely prohibits

the representation being stored in quick-access storage and leads to inefficiency

2

of query answering [9, 10, 11]. Therefore, it is crucial to find more compact

representations than the complete network representation.

In current spatial knowledge systems as well as many other spatial-related25

applications, it is standard to use the geometries of spatial objects stored in the

spatial database directly to calculate these relations, every time when a rela-

tion is needed. In those systems, the geometry of a region is represented as a

complex polygon possibly with holes and multiple components, and the number

of geometries for a set of spatial objects usually scales linearly with the number30

of objects. Nevertheless, the storage of these geometries could still take a large

amount of space, as sometimes the number of vertices might be quite large (e.g.,

we encountered regions with more than 140, 000 vertices in the experiments).

This in turn makes calculating qualitative spatial relations less efficient, because

the time needed for calculating relations from geometries is proportional to the35

number of vertices of these geometries. Furthermore, exposing original geome-

tries could lead to security and privacy issues, e.g., attackers might exploit the

boundary information and coordinates of some important regions to initiate pre-

cise strikes, and people or companies might not want to share precise geometry

data to services that only need to know the qualitative relations between spatial40

objects. To protect privacy and to ensure security, one could provide some kind

of “obfuscation” [12] that preserves qualitative spatial relations, rather than the

original geometries with accurate coordinates.

Direction relations between extended spatial objects like countries and re-

gions are important spatial knowledge. While many existing direction relation45

models approximate extended spatial objects as simple objects like points [13]

or rectangles [14], the Cardinal Direction Calculus (CDC) [15] represents the

direction of a primary object to a reference object by only approximating the

reference object by a rectangle (cf. Figure 2). That is, the exact geometry of

the primary object is used in the representation. This makes the model very50

expressive and can distinguish 511 different basic direction relations. Moreover,

CDC relations conform closely to human cognition. In the past two decades,

the CDC has attracted growing interests of researchers from AI and GIS, see

3

e.g., [4, 5, 16, 17, 18, 19]. While most of these works focus on how to solve CDC

constraint networks, Fogliaroni [9] and Long et al. [10] considered the compact55

representation of special CDC relations.

Figure 1: Illustrative example for the proposed methods.

In this paper, we proposed a new approach for compactly representing CDC

relations that can work well for all basic CDC relations. Precisely, given a set

of regions, we proposed a novel geometric representation for the CDC relations

between the regions in this set, which associates each region with a geometry60

that is then compactly represented with a set of simpler geometries. Whenever

needed, the CDC relation between any two regions can be easily recovered by

calculations over the corresponding simple geometries. We call this the com-

pact geometric representation of the CDC relations of the spatial dataset. For

example, consider the two regions shown in Figure 1. These two regions are65

associated with two new geometries consisting of shadowed grid cells, where the

CDC relation between the two regions can be obtained by checking the CDC

relation between the two new geometries. For each of the two new geometries,

we can further represent it with either polygons, given by the black dots in the

figure, or rectangles, given by the dashed lines, so that the polygons or rect-70

angles cover the same area of the geometry. It can be seen that the number

of black dots or the number of rectangles is much smaller than the number of

grid cells. By applying this to all of the regions in a dataset while ensuring the

CDC relations between regions can be correctly obtained from the correspond-

ing polygons or rectangles, we obtain a compact geometric representation of the75

CDC relations of the whole dataset. To this end, the method necessary cut is

4

used to associate each region with a geometry, and two methods, viz. rectangle

representation and polygon representation, are devised to compactly represent

those geometries. It turns out that the geometric representation obtained with

these methods could have a much smaller storage size than the original ge-80

ometries and the complete constraint network representation, and the correct

cardinal direction relations can also be efficiently extracted from the rectangle

representation. Furthermore, the new approach essentially provides an elegant

obfuscation and thus could help to protect data privacy. As confirmed by the

empirical evaluations on real-world datasets, the rectangle representation ap-85

proach is significantly superior to the state of the art techniques for compact

representation in storage size, and is competitive in the efficiency of answering

queries.

In the next section, we introduce some preliminary concepts and briefly re-

view related works. In Section 3, we describe our new compact representation90

approach in detail. The performance of the new approach is empirically evalu-

ated in Section 4 and Section 5 discusses some implications and limitations of

the new approach. Section 6 concludes the article.

2. Preliminaries and Background

The Euclidean plane R2 (or, the plane, for short) can be considered as a95

set of points. In this paper, a subset a of the plane is called a region if it is

nonempty and a = a◦, i.e., it is regular closed. Suppose x-axis and y-axis are

the two axes of a Cartesian coordinate system on the plane (see Figure 2).

For a region a, let

x−(a) = inf{x : (∃y)(x, y) ∈ a}, x+(a) = sup{x : (∃y)(x, y) ∈ a},

y−(a) = inf{y : (∃x)(x, y) ∈ a}, y+(a) = sup{y : (∃x)(x, y) ∈ a}.

The minimum bounding rectangle (MBR) of a is the set mbr(a) := [x−(a), x+(a)]×

[y−(a), y+(a)].100

A rectangle in the plane is axis-aligned if its sides are parallel to the x- and

y-axes in the plane. Specifically, mbr(a) is the smallest axis-aligned rectangle

5

NW N

NE

W

O

E

SW S SE

a

b

()x a−
()x a+

()y a+

()y a−

mbr()a

y

x

Figure 2: Illustration of MBR and CDC tiles.

that contains a (see Figure 2). In this paper, all the considered rectangles are

assumed to be axis-aligned. It is easy to see that an axis-aligned rectangle r

can be uniquely determined by the 4-tuple (x−(r), x+(r), y−(r), y+(r)).105

By extending the four sides of mbr(a), we divide the plane into nine tiles,

named by NW,N,NE,W,O,E,SW,S,SE, respectively (see Figure 2). The Car-

dinal Direction Calculus (CDC), proposed by Goyal and Egenhofer [15] (1997),

is a relation model that encodes the directional relationship between a primary

region b and a reference region a by exploiting the nine tiles determined by a.110

A basic CDC relation δ(b, a) is defined as {χ | χ(a) ∩ b◦ 6= ∅}, where χ is one

of the nine tile names {NW,N,NE,W,O,E,SW,S,SE}, and χ(a) is one of the

nine tiles determined by a. For example, in Figure 2, the CDC relation δ(b, a)

is {N,NE,E}. Note that for any two regions a and b, δ(b, a) = δ(b,mbr(a)).

Given a set of regions in the plane D = {a1, . . . , an}, the CDC relations be-

tween the regions can be represented in different ways. One naive representation

is to record the CDC relation δ(ai, aj) in a complete CDC constraint network

∆(D) = {viδijvj : δij = δ(ai, aj), 1 ≤ i 6= j ≤ n},

where each δij is a basic CDC relation. We often call a network like this an115

atomic network. As established in previous works [9, 10, 11], it has several

disadvantages:

• when the number n of regions becomes very large, it requires a large

storage space (actually Θ(n2));

6

• a large storage space may slow down query answering, as quick-access120

storage could be infeasible;

• it does not provide any geometric intuition.

Therefore, there is a need for more compact representations.

2.1. Related work

The challenging problem of compactly representing qualitative relations has125

been addressed by several researchers. Related work on this problem can be

divided into two approaches. The first approach is based on qualitative reason-

ing and aims to simplify the structure of qualitative constraint networks. The

second one makes use of geometric information of spatial objects, and focuses

on finding a representation of the qualitative relations such that queries about130

the relations can be efficiently answered.

Representatives of the first approach include [7, 20, 21]. Given a qualitative

constraint network ∆ of topological RCC8 relations, Egenhofer and Sharma

[20] noted that there exists a “smallest” subset of ∆ that has the same set

of solutions as ∆ and contains no redundant constraints, where a constraint135

C is redundant in ∆ if ∆ \ {C} has the same set of solutions as ∆. Later,

Rodŕıguez et al. [8] used this idea to develop a query pre-processing technique,

such that the number of topological relations expressed in a query is minimised.

However, they only discussed the case of basic topological relations. In a more

recent paper, Wallgrün [7] considered the problem of topological adjustment,140

i.e., how to adapt geometric data to satisfy given topological relations. He found

out that removing redundant topological constraints can be beneficial for the

optimisation process that is used to solve the problem of topological adjustment.

He further proposed two algorithms for removing redundant constraints, but

neither can find a “smallest” subset without redundant constraints. Recently, Li145

et al. [21] showed that, for any constraint network ∆ defined over a distributive

subalgebra of RCC8, there exists a unique “smallest” subset, called the prime

subnetwork of ∆, which contains no redundant constraints and has the same set

7

of solutions as ∆. They further proposed a cubic time algorithm for constructing

the prime subnetwork.150

When considering compact representation for answering queries about qual-

itative relations, removing redundant relations would not be ideal any more,

as retrieving removed relations requires qualitative reasoning which is time-

consuming. This leads to the second approach of compact representation.

Fogliaroni [9] proposed a framework to reduce the number of stored relations155

while support efficient queries about the qualitative relations. The idea is to

divide objects into clusters and make use of clustering relations, such as the

disjoint topological relation and the northeast cardinal direction relation. In

this way, only clustering relations between clusters and non-clustering relations

between objects need to be stored, and practically the number of stored rela-160

tions is reduced by a large amount. Later, Long et al. [10] found that some

topological relations or CDC relations between objects can be obtained from

relations between their MBRs. Based on that observation, they developed an

MBR-based representation to compactly represent either the topological rela-

tions or the CDC relations, and showed that this representation is more compact165

than the clustering-based representations while answers queries efficiently.

Long et al. [11] devised an algorithm that generates rectangles for objects,

such that the topological relations between them can be efficiently reconstructed

from the rectangles. They illustrated that the storage size of the generated

rectangles can be much smaller than directly storing all the relations. This170

algorithm represents a spatial object with a set of rectangles, which is similar

to the rectangle representation proposed in this paper. There are two major

differences: first, the rectangle representation for CDC relations forms a cover

of an approximation of the original geometry, while the one for RCC8 does not;

second, the CDC relation between two objects is recovered by taking the union175

of the CDC relations between their corresponding rectangles, while, in [11], the

topological relation between two objects is the same of that between the first

pair of rectangles generated for two objects.

Karlsen and Giese [22] proposed a general framework of using Bintrees to

8

compactly represent qualitative spatial information for answering queries, and180

they have shown that it can reduce storage size and query answering time for

topological relationships overlap and containment. Recently, Karlsen and Giese

[23] developed a more general framework that can encode different qualitative

information more compactly with Bintrees, including RCC8 relations. However,

the applicability of that framework to CDC relations is not clear.185

From the above we can see that the compact representation problem was

indeed considered before, but all these works focused on topological or very

special CDC relations, and no work considered how to compactly represent all

kinds of basic CDC relations while retrieving them efficiently.

3. The New Compact Representation Approach190

3.1. Geometric representation

Let U be the set of all regions in the plane and D = {a1, . . . , an} ⊆ U be a set

of regions that correspond to some spatial objects. An important task related

to D is to answer a type of queries that are to decide the CDC relation between

two given spatial objects. For the collection of the CDC relations between all195

pairs of D (i.e. the atomic CDC constraint network ∆(D) induced by D), we

can have a geometric representation, so that when needed the CDC relation

between any two objects can be computed from the geometries.

Definition 3.1. Suppose f is a mapping from D = {a1, . . . , an} to U . Let

f(D) = {f(ai) : ai ∈ D}. If f(D) is a solution of the CDC atomic network200

∆(D), i.e., ∀ai, aj ∈ D, δ(f(ai), f(aj)) = δ(ai, aj), then we say f(D) is a

geometric representation of ∆(D).

To obtain a geometric representation, it is not necessary to have a fully pre-

computed ∆(D). For example, D itself is always a geometric representation

of ∆(D), even when ∆(D) is not known yet. From a geometric representa-205

tion of ∆(D), to answer queries, we can compute the CDC relations by using

the regions f(ai). However, as has been noticed in [9, 10, 11], computing the

9

relations by using the original regions in D could take too much time for an-

swering the kind of queries about deciding the CDC relations between regions.

The reason is that these regions are represented as complex polygons and may210

contain many vertices, and that the time to calculate δ(ai, aj) is related to the

number of vertices of the polygons. Therefore, for quick calculation of the CDC

relation δ(f(ai), f(aj)), it will be desirable that each f(ai) has a simple shape,

e.g., having a small number of vertices or all its edges being parallel to the

axes. More specifically, to find an f that gives a good geometric representation215

{f(ai) : ai ∈ D} of ∆(D), we consider the following four aspects:

• faithfulness: (∀ai)(∀aj)[δ(ai, aj) = δ(f(ai), f(aj))];

• construction efficiency of f(ai);

• the storage space required for {f(ai) : ai ∈ D};

• efficiency of query answering based on {f(ai) : ai ∈ D}.220

Here, queries are restricted to the ones about deciding the CDC relations be-

tween regions. In the following, we describe our method for constructing a good

geometric representation.

Generally, our idea is to first construct a grid GD using the boundary lines

of the MBRs of regions in D, and then remove those grid cells from the MBR225

of each region ai if they violate the constraint involving ai.
1 For example,

consider the two regions in Figure 2. mbr(b) intersects the interior of the O-tile

of a (i.e. mbr(a)), while b itself does not. Therefore, δ(b, a) = {N,NE,E} 6=

{N,NE,E,O} = δ(mbr(b), a). To avoid the violation of the constraint δ(b, a),

any grid cells in mbr(b) that intersects the interior of the O-tile of a should230

be removed. In this way, for each ai, we obtain a new region h(ai) which is a

polygon and all its edges are parallel to the x- or y-axis. We call a polygon like

this rectilinear and call the mapping h : ai 7→ h(ai) the necessary cut of D (as it

only removes cells that must be cut). We will see that h is a faithful geometric

1This technique was first introduced in [4] for solving CDC constraint networks.

10

representation of D. To increase its construction and query efficiency, we further235

propose methods for representing the mapped geometries more compactly.

3.2. The induced grid and necessary cut of D

Given a set of distinct x-coordinates X = {xi ∈ R : 1 ≤ i ≤ m} and a set

of distinct y-coordinates Y = {yi ∈ R : 1 ≤ i ≤ n}, there are m corresponding

vertical lines and n corresponding horizontal lines. For convenience, suppose

xj < xk and yj < yk for any j < k. Formally, the corresponding lines are

defined as

Lx = {(xi, y) : ∀xi ∈ X,∀y ∈ R},

Ly = {(x, yi) : ∀yi ∈ Y,∀x ∈ R}.

The grid in the plane generated by L = Lx ∪ Ly is the set

GL = {[xi, xi+1]× [yj , yj+1] : ∀xi, xi+1 ∈ X,∀yj , yj+1 ∈ Y }.

Here each cij = [xi, xi+1]× [yj , yj+1] in GL is called a (grid) cell. Note that the

union of any subset of cells in G is actually a rectilinear polygon. We denote by

UG = {
⋃
T : T ⊆ G} the set of rectilinear polygons formed by subsets of cells240

in G.

Recall that the CDC relation between two regions is determined by the

intersection of the interior of the primary region and the nine CDC tiles of the

reference region (see Figure 2). This inspires us to consider the grid induced by

the MBRs of all a in D. Let

XD = {xi : ∃a ∈ D, (x−(a) = xi ∨ x+(a) = xi)},

YD = {yj : ∃a ∈ D, (y−(a) = yj ∨ y+(a) = yj)},

and

LD = {(xi, y) : ∀xi ∈ XD,∀y ∈ R} ∪ {(x, yi) : ∀yi ∈ YD,∀x ∈ R}

be the collection of the boundary lines of the MBRs of regions in D. We write

the grid generated by LD as GD, i.e.

GD = {[xi, xi+1]× [yj , yj+1] : ∀xi, xi+1 ∈ XD,∀yj , yj+1 ∈ YD},

11

where we suppose xi < xi+1 and yj < yj+1, ∀xi, xi+1 ∈ XD and ∀yj , yj+1 ∈ YD.

Figure 3 illustrates GD for the dataset D of four regions. By extending the

boundaries of the four MBRs (shaded rectangles), we obtain several horizontal

lines and vertical lines which form LD and thus GD. The rectangles bounded245

by the lines in LD are grid cells.

Figure 3: The grid GD generated by the dataset D of four regions.

Based on GD, we associate each ai with a rectilinear polygon h(ai) by re-

moving from mbr(ai) only those cells which violate the constraint of ai to some

aj .

Definition 3.2 (Necessary cut). The necessary cut of D is the mapping h250

from D to UGD = {
⋃
T : T ⊆ GD} such that, for any ckl ∈ GD, ckl 6⊆ h(ai) if

and only if ckl 6⊆ mbr(ai) or there exists j 6= i with δ(ckl, aj) 6⊆ δ(ai, aj).

We note that, for any grid cell ckl ∈ GD and any j, the CDC basic relation

δ(ckl, aj) is a singleton, i.e., it contains only one of the nine tile names. Moreover,

ckl ⊆ h(ai) if and only if c◦kl ∩ h(ai) 6= ∅. Also, we have ai ⊆ h(ai) ⊆ mbr(ai)255

for any ai ∈ D.

Intuitively, the necessary cut removes from each mbr(ai) the grid cells that

contradicts with the CDC relation δ(ai, aj) for some aj . Consider the two

regions a, b ∈ D in Figure 4, where δ(a, b) = {N,NE,E}. Suppose mbr(a) is

partitioned into several cells by GD as shown in the figure. To construct h(a),260

the cells in mbr(a) that are not shadowed will be removed when considering

δ(a, b).

12

N

NE

O

E

a

b

Figure 4: Illustration of necessary cut.

It is easy to see that the necessary cut maintains the MBRs and satisfies the

faithfulness requirement.

Proposition 3.3 (By [4]). For any ai ∈ D, mbr(ai) = mbr(h(ai)); for any265

ai, aj ∈ D, δ(ai, aj) = δ(h(ai), h(aj)).

It is worth noting that there exists some other mapping f : D → UGD

s.t. MBRs are maintained and the faithfulness requirement is satisfied, such as

regularisation [4].

Figure 5 illustrates the necessary cut and regularisation of a region a from270

the administrative areas of Germany. From the figure, it can be seen that the

light grey cells and dark grey cells together form a much simpler shape compared

against the light grey cells alone. In fact, the simple shape corresponds to the

necessary cut, and the complex one to the regularisation of a.

Figure 5: The regularisation of a (light grey coloured cells), and the necessary cut h(a) of a

(light grey and dark grey coloured cells), for a region a of the administrative areas of Germany.

As we can see, in the following sense, necessary cut actually gives the “rough-275

est” approximation using grid cells for the regions of D while preserving their

13

CDC relations.

Proposition 3.4. For any mapping f from D to UGD satisfying the require-

ments of δ(ai, aj) = δ(f(ai), f(aj)) and mbr(ai) = mbr(f(ai)) for any ai, aj ∈

D, we have that f(ai) ⊆ h(ai) for any ai ∈ D.280

Proof. See Appendix.

In the following discussions, we will focus on the necessary cut of D.

3.3. Calculation of the necessary cut of D

In order to calculate the necessary cut of D, i.e. h(ai) for each ai ∈ D, one

can use the O(n2) (n = |D|) time algorithm proposed in [4].285

Here, we adopt that algorithm with a further improvement, i.e. by consid-

ering only the cells in mbr(ai) for the calculation of each h(ai). To this end, we

define some auxiliary matrices in a way similar to that in [4].

Let nix = |{x−(ckl), x
+(ckl) : ckl ∈ mbr(ai)}|−1 and niy = |{x−(ckl), x

+(ckl) :

ckl ∈ mbr(ai)}| − 1. Suppose ckl is the cell at the k-th row and l-th column of

the grid, and ck0l0 is the top-left cell in mbr(ai). Define Bi(a) to be a matrix of

dimension niy × nix, for a set of cell a ⊆ mbr(h(ai)) as follows2:

Bi(a)[k, l] =

 1, if ck0+k,l0+l ∈ a;

0, otherwise.
(1)

Define

Qi =
∑
{Bi(mbr(ai) ∩ χ(aj)) : a◦i ∩ χ(aj) = ∅ and j 6= i}. (2)

Note that Qi[k, l] > 0 means ck0+k,l0+l is a cell in mbr(ai) ∩ χ(aj) where a◦i ∩

χ(aj) = ∅ for some j 6= i. As a result, we have the following conclusion.290

Proposition 3.5. The localized matrix Bi(h(ai)) for h(ai) can be determined

as follows

Bi(h(ai))[k, l] =

 1, if Qi[k, l] = 0;

0, otherwise.
(3)

2Here, the row and column indices of a matrix starts from 0.

14

Then by adapting the O(n2) algorithm in [4], h(ai) can be calculated in

O(n2
i + nti) time, where ni = max(nix, n

i
y) and ti is the bound of the time

needed for deciding if a◦i ∩ χ(aj) 6= ∅ for each j 6= i and each χ(aj), which is in

fact O(vi log vi) (vi is the number of vertices in ai) [24]. The adapted algorithm

is shown in Algorithm 1.

Algorithm 1: Calculating h(ai), adapted from [4].

Input: A set D = {a1, . . . , an} of regions and some specific 1 ≤ i ≤ n.

Output: h(ai)

1 T ← a zero matrix of dimension niy × nix, with ck0l0 being the top-left

cell of it;

2 foreach j and j 6= i do

3 foreach χ do

4 if a◦i ∩ χ(aj) 6= ∅ then

5 {ckl : k0 + k1 ≤ k ≤ k0 + k2, l0 + l1 ≤ l ≤ l0 + l2} ←

mbr(ai) ∩ χ(aj);

6 foreach k ∈ [k1, k2] do

7 T ← T [k, l1] + 1;

8 if l2 + 1 ≤ nix then

9 T ← T [k, l2 + 1]− 1;

10 foreach k ∈ [1, niy] do

11 Qi[k, 1] = T [k, 1];

12 for l = 2 : nix do

13 foreach k ∈ [1, niy] do

14 Qi[k, l] = T [k, l] + T [k, l − 1];

15 h(ai)← mbr(ai);

16 foreach ck0+k,l0+l ∈ h(ai) do

17 if Qi[k, l] 6= 0 then

18 h(ai)← h(ai) \ {ck0+k,l0+l};

19 return h(ai).

15

We shall note that the construction time of h(ai) is not our major concern295

here. Instead, we care about the query answering time using the constructed

h(ai). If the construction time is reasonably fast, then with the number of

queries increasing continuously, eventually the gain in query answering time will

be superior to the construction cost. In fact, the construction time is indeed

reasonably fast. For example, for most of the datasets with 400 to 3, 500 regions300

used in our experiments, constructing all h(ai) takes less than 2 minutes (the

shortest time is about 5 seconds). For larger datasets, such as one with 36, 702

regions, constructing all h(ai) takes about 1.4 hours, which is still reasonable as

the construction of h(ai) happens offline.

3.4. Compact representation of h(ai)305

After obtaining h(ai), the next problem is how to represent it in small stor-

age size and to answer queries efficiently with the representation. Note that

currently h(ai) is represented as a set of grid cells whose number might be very

large, e.g. O(|D|2). As an example, h(a) in Figure 5 has 13,508 grid cells, while

there are only 434 regions in D. It would be inefficient for either storage or310

answering query.

3.4.1. The polygon representation

As the shape of h(ai) is actually a polygon, a natural method is to store the

vertices of the polygon in a standard way, e.g., the “OpenGIS Implementation

Specification for Geographic Information”3.315

Usually, a polygon is represented as two sets of rings of vertices. The first set

contains only one ring, viz. the exterior boundary, and the other set contains

none or several rings, viz. the interior boundaries or holes. Therefore, to identify

polygons from h(ai), we need to identify these rings. Algorithm 2, with the help

of Algorithm 3, constructs the set of polygons determined by h(ai). This set of320

polygons are used to compactly represent h(ai).

3http://www.opengeospatial.org/standards/sfa

16

http://www.opengeospatial.org/standards/sfa

Definition 3.6. The set of polygons that are constructed by Algorithm 2 is

called the polygon representation of h(ai).

In order to minimize the number of vertices to store, we only use corner vertices,

i.e. the vertices at which the angle formed by the edges is not 180◦. Figure 6325

shows the cells of h(ai) for some ai and the polygon representation of h(ai).

The corner vertices of the polygon are black points and the edges are bold lines.

There are 36 cells in h(ai) and thus 144 vertices of the cells, while there are only

20 vertices in the polygon representation.

Figure 6: Illustration of a polygon representation.

In particular, Line 1 of Algorithm 2 identifies all the vertices by scanning330

the cells of h(ai) vertically and horizontally. This procedure will order the

vertices with the same x-coordinate vertically and the vertices with the same

y-coordinate horizontally. Such information will be useful for identifying the

rings. Each loop from Line 3 to Line 12 finds a polygon formed by the vertices

in V . Line 4 exploits Algorithm 3 to identify the exterior boundary. After the335

exterior boundary is found, all the inner vertices of the polygon formed by the

exterior boundary are identified and stored in V ′. Then the loop from Line 7 to

Line 10 identifies all the rings formed by the vertices in V ′, which are the holes.

Algorithm 3 identifies a ring of vertices for a given vertex set V . As shown

in Line 2, the starting vertex v0 is the one that has the largest y-coordinate340

on the left most side of the given set of vertices. If the vertices on the ring

is assumed to be in clockwise order, then the next vertex after v0 must have

the same y-coordinate as v0 and is on the right side of v0. By this observation,

17

Algorithm 2: An algorithm for identifying polygons of h(ai).

Input: h(ai), a set of grid cells representing the digitalization of a

region ai.

Output: P , the set of polygons determined by h(ai).

1 V ← IdentifyVertices(h(ai));

2 P ← ∅;

3 while V 6= ∅ do

4 R← IdentifyRing(V);

5 V ′ ← IdentifyInnerVertices(V, r);

6 R ← ∅;

7 while V ′ 6= ∅ do

8 R′ ← IdentifyRing(V ′);

9 R ← R∪ {R′};

10 P ← P ∪ {(R,R)};

11 return P .

Line 3 identifies the next vertex of v0. The loop from Line 6 to Line 16 identifies

vertices in clockwise order. Particularly, if the previous vertex v0 was identified345

by searching horizontally, then the current searching for v1 will be done vertically

and vice versa, because each vertex is a corner vertex, while whether the search

goes up or down, or right or left, depends on the order of v0 in the list of

vertices with the same x-coordinate or the same y-coordinate as v0. This is

done in Lines 9 to 15. All the vertices that are identified will be removed from350

V in Line 17.

Proposition 3.7. The time complexity of Algorithm 2 is O(m3), where m is

the number of cells in h(ai).

Proof. See Appendix.

In practice, the time needed for Algorithm 2 would be much shorter than what355

is claimed in the above proposition. The reasons are:

18

Algorithm 3: IdentifyRing(V)

Input: V , a set of vertices.

Output: R, a list of vertices in V that form a ring.

1 R← ∅;

2 v0 ← argmaxy argminx V ;

3 v1 ← argminx {v ∈ V ′ : x(v) > x(v0), y(v1) = y(v0)};

4 Flag← true;

5 R← R ∪ {v0};

6 while v1 6= v0 do

7 v0 ← v1;

8 R← R ∪ {v0};

9 if Flag then

10 v1 ← SearchVertically(V);

11 Flag ← false;

12 else

13 v1 ← SearchHorizontally(V);

14 Flag ← true;

15 V ← V \R;

16 return R.

1. |V | would be much smaller than m.

2. The number of iteraions of the outer loop would be much smaller than

|V |, as each iteration identifies a polygon and removes its vertices from V .

The number of polygons will be much smaller than the number of vertices.360

3. The execution of Line 5 would take much less time, e.g., O((|V |−|R|)·|R|)

because only the vertices not in R need to be checked.

Actually, our experiment on a real-world dataset with 3, 145 regions and average

value of m ≈ 14, 000 showed that the average time for each h(ai) is less than 1

ms on a computer with an Intel® CoreTM-i5 3.1 GHz CPU.365

19

However, calculating CDC relations between polygons might not be easy,

which would result in less efficient performance for answering queries. On the

other hand, calculating CDC relations between rectangles would be much easier.

Therefore, if we can represent h(ai) using rectangles, then answering queries

would be more efficient than uing polygons. In the following, we consider an370

alternative method for representing h(ai) by using rectangles.

3.4.2. The rectangle representation

Note that h(ai) can be considered as one or more rectilinear polygons. A

rectilinear polygon can be covered by a set of axis-aligned rectangles. More

formally, given a rectilinear polygon P , a rectangle cover of P is a set C of375

axis-aligned rectangles s.t. ∀r ∈ C we have r ⊆ P and
⋃
C = P . In a rectangle

cover, rectangles are allowed to overlap. We make use of a rectangle cover to

represent h(ai).

Definition 3.8. A rectangle cover of h(ai) is called a rectangle representation

of h(ai).380

Figure 7 shows the cells of h(ai) for some ai and a rectangle representation of

h(ai). The edges of the rectangles are bold lines. There are 36 cells in h(ai)

while only 5 rectangles in the rectangle representation. Using rectangle cover

has the following advantages:

• A rectangle is determined by four coordinates and it can contain a large385

number of grid cells in h(ai). Therefore, it is promising for saving the

storage space of h(ai).

• Calculating CDC relations between rectangles is very simple, and thus it

could be efficient to retrieve the original CDC relations using rectangle

representation.390

An optimised rectangle representation of h(ai) is a rectangle cover of h(ai)

with a minimum number of rectangles. However, finding an optimised rectangle

representation is not an easy task. Actually, it is a classic problem to find a

20

Figure 7: Illustration of a rectangle representation. The rectangles are drawn with some

offsets for clearness.

rectangle cover with a minimum number of rectangles for a rectilinear polygon,

and this problem is NP-complete in general [25].395

Many approximation algorithms and special cases have been considered in

the literature. Particularly, when the rectilinear polygon is x- or y-orthogonally

convex, i.e. the intersection between any line parallel to x- or y-axis and the

polygon is an empty set, a point, or a single segment, there exists an exact

algorithm [26] for finding a rectangle cover of minimum number; when the rec-400

tilinear polygon does not have holes, there is an approximation algorithm with

approximation factor 2, i.e. it guarantees to find a rectangle cover of number

less than twice the minimum number; when the rectilinear polygon is allowed

to have holes, Kumar and Ramesh [27] gave an algorithm with approximation

factor O(
√

log k), where k is the number of horizontal grid edges of the polygon.405

Here, we adopt the algorithm in [27], as it has a good performance guaran-

tee while being easy to implement. The algorithm for identifying a rectangle

representation of h(ai) is shown in Algorithm 4.

The idea of the algorithm is simple. It scans each column of cells in h(ai) to

find column strips. A (column) strip is a maximal set of vertically consecutive410

cells in h(ai). The method ExpandStrip(s) then expands a strip s horizontally

to form a maximal rectangle that is contained in h(ai). The returned rectangle

representation is the set of maximal rectangles found by ExpandStrip(s), with

repeated ones removed. Franzblau [28] proposed a similar sweep-line algorithm

that expands row strips.415

21

Algorithm 4: Identifying a rectangle representation of h(ai).

Input: h(ai)

Output: K, a set of axis-aligned rectangles covering h(ai).

1 K ← ∅;

2 foreach column c of cells in h(ai) do

3 foreach strip s in c do

4 r ← ExpandStrip(s);

5 K ← K ∪ {r};

6 return K.

Proposition 3.9. The time complexity of Algorithm 4 is O(m3), where m is

the number of cells in h(ai).

Proof. See Appendix.

In practice, the time needed for Algorithm 4 would be much less than O(m3),

as the number of columns would be much smaller than m, and the number of420

strips in each column and the number of cells in each strip would also be much

smaller than m. Our experiments on a real-world dataset with 3, 145 regions

and average value of m ≈ 14, 000 showed that on average it takes less than 2

ms per region on a computer with an Intel® CoreTM-i5 3.1 GHz CPU.

3.4.3. Storage space analysis425

To consider the storage space of the two representations, for the polygon rep-

resentation, we count the number of coordinates required for the vertices as the

size of it; for the rectangle representation, we count the number of coordinates

required for the rectangles as the size of it. Let |V | be the number of vertices in

the polygon representation, and p∗ be the number of rectangles in the rectangle430

representation. Then the size of the polygon representation is 2|V | and the size

of the rectangle representation is 4p∗. For the relation between the sizes of the

polygon representation and the rectangle representation, we have the following

conjecture.

22

Conjecture 3.10. The size of the polygon representation is larger than or equal435

to the size of the rectangle representation, i.e. 2|V | ≥ 4p∗.

In the following, we show this conjecture is actually true. Before proving the

conjecture, we introduce some auxiliary concepts adapted from [28]. A recti-

linear polygon has convex vertices and concave vertices. A vertex is said to be

concave if the inner angle at this vertex is 270◦, otherwise it is convex. There440

are two types of convex vertices. One is normal convex vertex, which is the

intersection of exactly two edges of the polygon forming a 90◦ inner angle. The

other one is degenerated convex vertex, which is the intersection of two pairs of

edges, forming two 90◦ inner angles. In Figure 8, p1 is a normal convex ver-

tex and p4 is a degenerated convex vertex. As a result, in the vertex list of a445

rectilinear polygon, a normal vertex appears exactly once, a degenerated vertex

appears exactly twice.

1p
2p

2L

3p 4p
1L

Figure 8: Illustration of different vertices and chords in a polygon.

The concave vertices can be classified with the help of vertical chords. A

(vertical) chord is a line segment between two points on the boundary of a

polygon, on which at least one endpoint is a concave vertex and the other450

points are in the interior of the polygon. By extending the vertical edges of a

polygon to infinite lines, the polygon is partitioned into several non-overlapping

rectangles and chords are created. For example, Figure 8 shows all the vertical

chords of the polygon by dotted lines and broken lines. Generally, in a polygon

there are two types of chords:455

• type 1 chord: exactly one endpoint is a concave vertex.

23

• type 2 chord: both endpoints are concave vertices.

In Figure 8, L1 is a type 1 chord and L2 is a type 2 chord, and the other type

2 chords are represented by broken lines. We call the concave vertex on a type

1 chord a type 1 vertex, and a concave vertex on a type 2 chord a type 2 vertex.460

In Figure 8, p3 is a type 1 vertex and p2 is a type 2 vertex.

For the number of vertices and the rectangles obtained by partitioning a

polygon through expanding vertical edges, [28] gave the following lemma.

Lemma 3.11 (By [28]). Suppose h(ai) is a rectilinear polygon. Let µ1 and

µ2 be the number of normal convex vertices and degenerated convex vertices,465

respectively. Let c1 and c2 be the number of type 1 and type 2 vertical chords,

respectively. Let p be the number of rectangles obtained by the partition of h(ai)

into rectangles as discussed before. Then µ1 + 2µ2 + 3c1 + 2c2 = 4p.

By the above lemma, we have the following relation between the number of

vertices and the number of rectangles obtained in Algorithm 4.470

Proposition 3.12. Let p∗ be the number of rectangles obtained in Algorithm 4.

|V | = µ1 + 2µ2 + c1 + 2c2 ≥ 2p ≥ 2p∗.

Proof. See Appendix.

Our experiments on real-world datasets showed that the number of vertices

in the polygons identified by Algorithm 2 for h(ai) is about three times as the475

number of rectangles identified in Algorithm 4. Therefore, both in theory and in

practice, the rectangle representation is superior to the polygon representation

in storage efficiency.

Although theoretically we cannot ensure good performance of the two new

representations, we deem that they are promising in practice, especially the480

rectangle representation. The following observations give some hints about the

potential of the rectangle representation in storage efficiency.

A region is connected if it cannot be divided into two non-empty disjoint

closed sets in the plane.

24

Proposition 3.13. Suppose D consists of only connected regions. If [mbr(ai)]
◦∩485

[mbr(aj)]
◦ = ∅, then ∀χ, [mbr(ai)]

◦ ∩ χ(aj) 6= ∅ iff a◦i ∩ χ(aj) 6= ∅.

Proof. See Appendix.

For connected regions, the above proposition means that a cell in mbr(ai) will

not be removed for constructing h(ai) because of aj , given that the MBRs of ai

and aj are not intersecting interiorly.490

We say a region is interiorly connected if its interior is a connected point set,

i.e. its interior cannot be written as the union of two disjoint open point sets.

Proposition 3.14. Suppose D consists of only interiorly connected regions. If

[mbr(ai)]
◦ ∩ [mbr(ai)]

◦ 6= ∅, then at most four rectangle regions will be removed

from mbr(ai) because of aj in the construction of h(ai).495

Proof. See Appendix. An illustration of the situation is shown in Figuer 9.

mbr()ja

mbr()ia

(a) Removing five rectangle regions.

mbr()ja

mbr()ia

(b) Removing four rectangle regions.

Figure 9: Illustration of removing rectangle regions from mbr(ai) because of aj .

The intuition behind the above two propositions is that the complexity of

the shape of h(ai) is mainly due to intersecting MBRs. Therefore, the average

number of MBRs intersecting interiorly with mbr(h(ai)) would be an important

factor affecting the size of the representation, which can be measured by the500

so-called average intersection degree [10].

25

Definition 3.15 (From [10]). Given a set of regions D, suppose the MBR of

a region ai ∈ D intersects with the interior of di other MBRs of regions in D.

Then the average intersection degree (AID) of D is (
∑

ai∈D di)/|D|.

Intuitively, the average intersection degree of a set of regions is the average505

number of MBRs whose interior intersect with the MBR of each region in the set.

The effect of AID on the storage size of the representations will be illustrated in

the section of empirical evaluations. Intuitively, by the above two propositions,

the smaller the AID is, the less complex the shape of h(ai) is.

3.5. Compact geometric representation of CDC relations510

So far, we have discussed two methods, viz. the polygon representation and

the rectangle representation, for compactly representing the geometric represen-

tation of the CDC relations between a set of regions. It is straightforward to

see the following conclusion about the relationship between the CDC relations

of any two original regions and of the more compact representations.515

Proposition 3.16. Given a set D of regions, suppose ai, aj ∈ D. Let Pi and

Pj be the polygon representations of h(ai) and h(aj), and Ki and Kj be the

corresponding rectangle representations. Then

δ(ai, aj) =
⋃
{δ(p,mbr(Pj)) : p ∈ Pi},

and

δ(ai, aj) =
⋃
{δ(r,mbr(Kj)) : r ∈ Ki}.

With the two methods for compact representation and the method for ge-

ometric representation, we actually obtained a new systematic procedure to

compactly represent the CDC relations between a set of regions:

1. Given a set D of regions, build the grid GD;

2. Obtain the necessary cut of D, i.e. h(D) = {h(ai) : ai ∈ D};520

3. For each h(ai), apply Algorithm 2 (polygon representation) or Algorithm 4

(rectangle representation), to obtain a more compact representation of

h(ai).

26

The time complexity for the first step is O(n), where n = |D|, as we only need

to get the coordinates of the MBR of each region in D. For the second step, it525

uses Algorithm 1 to obtain h(ai) which can be done in O(n2
i +nti)time for each

h(ai) (cf. Section 3.3). There are n pieces of such h(ai), so the time complexity

for the second step is O(n(n2
i + nti)). The last step needs O(m3

i) time for each

h(ai), where mi is the number of cells in h(ai). Therefore, the time complexity

for the whole procedure is O(n+ n(n2
i + nti) + nm3

i) = O(n(n2
i + nti +m3

i)).530

In the above procedure, the mapping h is faithful, such that the CDC rela-

tion between any two original regions ai and aj in D is the same as that between

h(ai) and h(aj). In other words, the CDC relation between any original regions

can be directly calculated later using the necessary cut. Moreover, by Propo-

sition 3.16, the CDC relation between the original regions can also be directly535

calculated from the more compact representation. Therefore, the resulting com-

pact geometric representation of the CDC relations can then be used to retrieve

the original CDC relations.

It is also worth noting that the above procedure is reasonably fast to con-

struct a geometric compact representation of CDC relations. For most of the540

datasets used in our experiments, the time is from 6 seconds to 3 minutes. For

a dataset with 36, 702 regions (AID: 7) it is about 1.4 hours, and for a dataset

with 11, 613 regions (AID: 410) it is about 1.7 hours.

In the following, we briefly describe how to accomplish that based on a

polygon representation or a rectangle representation. The practical performance545

for reducing storage space and retrieving relations will be evaluated in Section 4.

3.6. Answering queries with compact geometric representations

There are several types of queries, as summarised in [29]. Here we focus on

the queries of retrieving the CDC relation when given two objects, which is very

common in applications, e.g., navigation services might be interested in if some550

place is “to the north of” a certain landmark.

The general approach for answering such queries from a compact geometric

representation of the CDC relations is to use geometric calculation to compute

27

CDC relations between the geometries in the compact representation. In partic-

ular, according to Proposition 3.16, for the polygon representation, we check the555

intersections between the polygons of Pi and the nine tiles formed by mbr(Pj);

for the rectangle representation, we check the intersections between the rectan-

gles of Ki and the nine tiles formed by mbr(Kj), and both checks intersection

of MBRs before checking intersection between polygons.

Spatial indexing techniques could be helpful for further optimizing query an-560

swering. Take the rectangle representation as an example. R-trees and similar

data structures [30, 31, 32] can be used to index the rectangles in the represen-

tation h(ai), so that it becomes more efficient to check if there is any rectangle

intersects the tile χ(h(aj)). However, such techniques need additional storage

space that could be much larger than the geometry-based representation, and565

such optimization is actually not necessary, as our experiments in the next sec-

tion will show that query answering is already efficient enough without such

indexing techniques. Therefore, here we would not consider them for query

answering optimisation.

4. Empirical Evaluation570

In this section, we evaluates the two geometry-based representations, viz.

the polygon representation and the rectangle representation, in terms of storage

size and query answering efficiency.

In the experiments, we employed the real-world datasets used in [10], divided

into two classes, viz. Real-1 and Real-2, based on the average intersection de-575

grees of these datasets. Real-1 consists of five datasets about the administrative

regions from Global Administrative Areas 4, and Real-2 comprises five datasets

about the environmental habitats from the European Environment Agency 5.

These datasets contain geometric data for polygon regions represented as coor-

4https://gadm.org/
5https://www.eea.europa.eu/ds resolveuid/78a8fdf22fa14fddb8ff218071aeb5d8

28

dinates of the vertices of the polygons. 6 The information about the datasets580

is summarised in Table 1 (AID in the table means Average Intersection Degree

per region, as defined in Definition 3.15).

Table 1: Datasets Summary.

Dataset #Regions AID Avg. #Vert Avg. #Comp

Germany 434 6.57 422 1.2

Ukraine 629 6.17 192 1.1

Australia 1395 7.12 2362 4.0

China 2411 6.86 734 1.9

USA 3145 6.42 45 3.5

Real-2.1 600 44.22 200 12.6

Real-2.2 610 105.60 300 21.1

Real-2.3 605 121.37 361 29.0

Real-2.4 611 178.43 198 18.5

Real-2.5 604 204.77 343 34.2

4.1. Storage size

The baseline methods for the comparison of storage size would be the MBR-

based representation (MR), the original regions (OR), and the naive complete585

storage of the CDC relations (CS), as MR is the state of the art which has been

shown superior to other previous methods that are applicable, OR is a natural

geometric representation, and CS is a purely qualitative representation that

is commonly used in applications. Note that the prime subnetwork technique

proposed in [21] is not applicable to CDC relations.590

The storage size of the polygon representation (Poly) or the rectangle repre-

sentation (Rect) is measured by the number of coordinates for representing the

polygons or the rectangles; for the MBR-based representation, it is measured

by the sum of the number of stored CDC relations and the number of coordi-

nates for representing the MBRs of connected components of the regions; for the595

method using original regions, it is measured by the number of coordinates for

6Downloadable from http://zhiguolong.github.io/file/datasets.zip

29

representing the regions; for the naive complete storage method, it is measured

by the number of stored CDC relations. Note that for each dataset, comparing

total storage size would be equivalent to comparing average storage size ob-

tained by dividing total storage size by the number of regions in the dataset.600

Therefore, in order to keep the numbers small, we will do the comparisons on

average storage size.

Figure 10 shows the average storage size for a region in the datasets. The

x-axis of the left figure is the number of regions in datasets and the x-axis of

the right figure is AID, which can be regarded as a measure of the complexity605

of the CDC relations of a dataset. The first figure is used to show the variation

of storage sizes when the number of regions changes while the AID is fixed. The

second figure intends to show the effect of AID on storage size of the methods.

Note that the y-axis of Figure 10(a) is in log scale.

● ● ● ● ●

1

5

10

50

100

500

1,000

5,000

10,000

0 500 1000 1500 2000 2500 3000 3500
Number of Regions

Av
er

ag
e

S
to

ra
ge

 S
iz

e
(in

 lo
g

sc
al

e)

● Rect
Poly
MR
OR
CS

(a) Real-1

●
● ●

●
●

0

100

200

300

400

500

600

700

800

0 25 50 75 100 125 150 175 200 225
Average Intersection Degree

Av
er

ag
e

S
to

ra
ge

 S
iz

e

● Rect
Poly
MR
OR
CS

(b) Real-2

Figure 10: Storage size comparison on the two classes of real-world datasets.

From the figures, it is clear that there is a large improvement of the other610

methods over OR and CS. For Real-1 datasets, while the other methods maintain

relatively small average storage sizes under 30, the methods OR and CS exhibit

rather large average storage sizes of more than hundreds; for Real-2 datasets,

30

the methods OR and CS have large average storage sizes of more than 400 for

each region (note there are about 600 regions in the Real-2 datasets), while615

those of Rect and Poly are under 100 and MR between 100 and 400.

Moreover, in the figure for Real-1 datasets, when the number of regions

increases, the average storage size of Rect and Poly is almost a constant. This

indicates that the total storage size of Rect scales linearly to the number of

regions, when AID is fixed. On the other hand, although the average storage620

size of MR stays small, it slightly increases when the number of regions becomes

larger. As for CS, its average storage size increases linearly w.r.t the number

of regions, which means its total storage size is quadratic to the number of

regions. For OR, it is mainly affected by the complexity of the regions. Note

that from the figure we can see that the storage size of MR is also affected by625

the complexity of the regions, because it needs to store the MBRs of connected

components of the regions, while for Rect and Poly it is not the case, which is

due to that it only cares about the CDC relations rather than the shapes of the

regions.

The figure for Real-2 datasets considers the effect of AID on storage size.630

As AID increases, the average storage size of Rect and Poly increases slightly,

while that of MR increases drastically, and the storage size of CS almost does

not change due to that the number of regions does not change much. Note that

AID reflects the complexity of the CDC relations. This result shows that Rect

and Poly can handle complex datasets very well and much better than MR,635

which is the state of the art. The storage size of OR is again affected by the

complexity of the regions, and that also affects the storage size of MR, as shown

in the figure that the rate of increment of its storage size (i.e. the slope of line

segments) is correlated with the difference of vertex number in datasets.

From the results, it is clear that Rect and Poly dominate the other methods640

for all the datasets and scales very well w.r.t. either the number of regions

or AID, with average storage sizes around 12 (Rect) and 17 (Poly) for Real-

1 datasets, and between 30 and 80 (Rect) and between 40 and 90 (Poly) for

Real-2 datasets. Also, Rect always has smaller storage size than Poly for all the

31

datasets, confirming the result in Proposition 3.12. There are two reasons for645

its good performance:

• when AID is small, i.e. the dataset is not very complex, the CDC relations

of the regions usually will not remove many cells from the MBR of ai and

thus the shape of h(ai) is simple;

• when AID becomes larger, i.e. the dataset becomes more complex, al-650

though more cells from the MBR of ai will be removed when constructing

h(ai), the removed cells are usually not critical to make the shape of h(ai)

to be much more complex.

To demonstrate the capability of dealing with larger datasets, we also tested

Rect on six large datasets used by [11]. The first four datasets are from European655

Environment Agency 7, the County dataset is a dataset of county subdivisions

of the USA 8, and the School dataset is a dataset of school catchment areas in

the USA 9. The information is summarised in Table 2.

Table 2: Larger Datasets Summary.

Dataset #Regions AID Avg. #Vert Avg. #Comp

HEU 5322 238.18 155 15.00

HMS 6258 227.89 132 12.91

SEU 10061 413.23 149 14.01

SMS 11613 409.69 129 12.24

County 36702 6.74 782 1.15

School 65192 24.29 782 1.43

The result is summarised in Table 3. As we can see from the result, Rect still

performs quite well on larger datasets, even for datasets with more than 60, 000660

regions. It outperforms all the other methods. This is especially significant for

datasets with larger AID, such as the four datasets HEU, HMS, SEU, and SMS,

7https://www.eea.europa.eu/ds resolveuid/78a8fdf22fa14fddb8ff218071aeb5d8
8http://www.census.gov/
9https://nces.ed.gov/programs/edge/SABS

32

where the average storage sizes (and thus the total sizes) of the other methods

are several times (4 to 200) greater than that of Rect.

Table 3: Storage size comparison on larger datasets, averaged over the number of regions.

Method HEU HMS SEU SMS County School

Rect 57.12 53.16 57 52.04 13.08 19.68

MR 302.18 283.53 473.27 462.65 15.34 34.01

OR 310 264 298 258 1564 1564

CS 5321 6257 10060 11612 36701 65191

The effect of different AIDs on Rect can be seen from Figure 11. For a665

dataset with smaller AID, most regions would have a relatively small number

of generated rectangles, while for a dataset with larger AID, the number of

regions having larger numbers of generated rectangles will increase, but still

regions with smaller numbers of rectangles are the majority.

0

100

200

300

0 10 20 30
of Rects per Region

C
ou

nt

(a) Australia

0

10

20

30

40

0 10 20 30 40 50
of Rects per Region

C
ou

nt

(b) Real2.5

Figure 11: Histograms showing the distribution of the number of generated rectangles for two

datasets “Australia” and “Real2.5”, where the x-axis shows different numbers of rectangles

and the y-axis shows the numbers of regions that have corresponding numbers of rectangles.

33

4.2. Answering query670

The baseline methods for comparison would be the query answering methods

for previously mentioned MR, OR, and CS. These query answering methods are

denoted by QMR, QOR, and QCS, respectively. Query answering methods using

the rectangle representation and the polygon representation will be denoted by

QRect and QPoly, respectively. The queries considered here are to find out675

the CDC relation between two given objects. As the number of CDC relations

that need to be stored by QMR and QCS can be quite large, storing them in a

database is more scalable than in a in-memory hash table. Therefore, here we

store them in a database hash indexed by using pairs of the regions as keys. The

efficiency of answering queries of all these methods will be measured by the time680

for finding out the CDC relations between pairs of objects. The experiment has

been done on a computer running Ubuntu 14.04LTS, with an Intel® CoreTM-i5

3.1 GHz CPU and 8 GB memory.

We present the results on the dataset “Australia” (with the largest average

number of vertices) in Real-1 and the dataset “Real-2.5” (with the largest AID)685

in Real-2. Figure 12 shows the results of queries for 10, 000 random pairs of ob-

jects from each of the two datasets. The 10, 000 pairs are obtained by randomly

sampling in the set of all the pairs of objects for each dataset.

In Figure 12, each box plot represents the query times of one method. The

first and third quartiles of the query times of a method are represented by the690

hinges of its corresponding box, and the second quartile (i.e. the median) is the

grey horizontal line segment inside the box. The maximum and minimum values

are visualised as two short horizontal line segments (called whiskers) connected

by vertical line segments above and under a box. The mean query time is drawn

as “×”.695

The overall performance of query answering with the two new geometric

representations is quite promising, especially the rectangle representation. In

particular, for the dataset “Australia” of Real-1, the medians of QRect and

QPoly are 91.7 ns and 97.5 ns, respectively, not much higher than the median

of QMR, which is 46.2 ns, when compared against QOR and QCS, which are700

34

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

QOR QMR QRect QPoly QCS
Method

Q
ue

ry
 T

im
e

(n
s)

(a) Real-1 (Australia)

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

QOR QMR QRect QPoly QCS
Method

Q
ue

ry
 T

im
e

(n
s)

(b) Real-2 (Real-2.5)

Figure 12: Query time comparison on two real-world datasets.

458.0 ns and 14, 620.0 ns, respectively. For the dataset “Real-2.5”, the median

of QPoly is the smallest (87.1 ns), followed by that of QMR (98.3 ns), while

that of QRect is not much larger (211.2 ns), as that of QCS is 19, 411.0 ns. The

median of QOR lies in the middle, which is 762 ns. This indicates that QRect

and QPoly can answer half of the queries as efficiently as the state of the art705

method QMR, and is more efficient than the widely used method by calculating

with original geometries. The long query time of QCS is due to that each query

needs to be answered by communicating with a database, which is usually not as

efficient as reading data directly from the memory. QMR also has this problem

for queries that involve objects with intersecting MBRs.710

Considering the mean value of each method, which reflects the average time

needed for processing a group of queries, it turns out the rectangle representation

performed very well again. Specifically, its mean query time is about 123.9 ns

for “Australia”, which is respectively 91.0%, 67.8%, 99.1%, and 99.2% less than

that of QPoly, QMR, QOR, and QCS, and is about 305.6 ns for “Real-2.5”,715

which is respectively 99.2%, 95.8%, 99.9%, and 98.5% less than that of QPoly,

QMR, QOR, and QCS. Our hypothesis tests on the data (Wilcoxon signed-rank

35

tests) confirmed the impression that the average query performance of QRect is

significantly more efficient than the other methods (significant at the 1% level).

The drastic difference between median and mean values for QOR, QMR, and720

QPoly is due to that their query times for “harder” cases (i.e. cases whose time

is larger than the median time) is usually much larger than the median. For

example, for the dataset “Real-2.5”, there are more than 3, 000 cases with query

time larger than 10, 000 ns for each of the three methods, while their median is

all less than 1, 000 ns. On the other hand, QRect has similar mean and median725

values, indicating that it is also efficient on “harder” cases.

Comparing the two figures, one would note that the performance of QRect

is not greatly affected when the number of intersecting MBRs increases, which

might be the benefit of decomposing complex shaped polygons into rectangles.

In summary, the results indicate that the rectangle representation can achieve730

a rather good balance between storage size and query answering efficiency, such

that it has the smallest storage size while the query answering method based

on it is about as efficient as the best method. Nevertheless, the polygon rep-

resentation would still be useful in cases where the application or user asks for

polygons rather than rectangles in the representation, e.g., in illustrative maps.735

5. Implications and Limitations

5.1. Theoretical and managerial implications

In this article, the proposed approach has been demonstrated as promising

both in theory and by empirical evaluations. This indicates that the proposed

approach can help other algorithms and applications to better process qualita-740

tive directional relations, by storing them more compactly and retrieving them

quickly. With the help of this approach, other algorithms and applications would

be scalable to very large datasets that are common nowadays. The proposed

approach also provides obfuscation to protect data privacy, by representing the

original geometries in rough approximations.745

36

As an example of how the proposed approach could be useful in practice,

consider a location-based service company that needs to display obfuscated ge-

ometries for interesting regions on a map, e.g., land use map for a country where

accurate boundary information for regions is highly sensitive, and to show in

text the directional information of any two regions that are selected by the750

user. In this example, the proposed approach can be used to provide a com-

pact representation and efficient query answering framework for the directional

information, so that the storage space is saved and the scalability of the service

is improved, while users can still quickly get directional information from the

service. In addition, by using generated polygons and rectangles as approxi-755

mations to the original geometries, companies or data providers do not need to

worry about security issues of the original data.

5.2. Limitations and future work

Although the proposed approach is promising, it still has some limitations:

the time complexity of the whole procedure is relatively high, so currently it760

cannot process datasets with millions of regions; it heavily relies on the prop-

erties of the CDC model, so it cannot be easily extended to deal with relations

from other models; in the current form, the resulting representation cannot be

dynamically updated, so it is hard to process dynamic datasets.

In the future, more efficient improvements of the current approach would be765

an interesting research topic. Also, similar techniques that apply to more generic

qualitative relations can be considered, e.g., the widely used topological relations

from the RCC8 model [33] or the nine-intersection model [34]. In addition,

to support dynamic information processing is also an important problem for

exploration, that is, how to efficiently update the generated geometries when770

the relations between some objects has been changed.

6. Conclusion

In this article, we addressed the problem of compact representation of qual-

itative spatial relations such that they can be efficiently retrieved to answer

37

queries. The novel approach proposed here applies to the directional CDC rela-775

tions between a large number of regions, and it constructs simple geometries for

each region by using necessary cut. The polygon representation and the rectan-

gle representation are considered to represent the constructed simple geometries.

Theoretically, the rectangle representation is demonstrated as promising to have

small storage size for large datasets, and always has no larger storage size than780

the polygon representation. Due to their simple shapes, these two methods are

fast for retrieving CDC relations. Also, on real-world datasets, the rectangle

representation has been shown to be superior to the state of the art techniques

in storage size and competitive in query answering efficiency. Nevertheless, there

are still limitations of the proposed approach. Improvements and applications785

will thus be considered in future work.

Acknolwedgements

This work was supported by the National Natural Science Foundation of

China (61806170, 61773324, 11671244), the Humanities and Social Sciences

Fund of Ministry of Education (18XJC72040001), and the Fundamental Re-790

search Funds for the Central Universities (2682018CX25, 2682014ZT28).

Appendix A. Proofs of Propositions

Proof (Proof of Proposition 3.4). We only need to show that ∀ckl ⊆

mbr(ai), if ckl 6⊆ h(ai) then ckl 6⊆ f(ai). Note that if ckl 6⊆ h(ai), then ∃j, χ

s.t. a◦i ∩ χ(aj) = ∅ and ckl ⊆ χ(aj). Then ckl 6⊆ f(ai). This is because795

otherwise (f(ai))
◦ ∩ χ(aj) 6= ∅ while a◦i ∩ χ(aj) = ∅, which contradicts that

δ(ai, aj) = δ(f(ai), f(aj)).

Proof (Proof of Proposition 3.7). The first line of Algorithm 2 scans the

cells in h(ai) twice and the number of vertices in V is at most four times as

the number of cells in h(ai), i.e. |V | ≤ 4m. Note that each execution of800

Line 4 (i.e. Algorithm 3) removes at least one vertex, and thus the number of

38

iterations from Line 3 to Line 12 is at most |V |. The steps inside the outer

loop take O(|V |2) time in total. In fact, each execution of Line 4 takes time

linear to |V | and each execution of Line 5 takes time of O(|V | · |R|), which is

at most O(|V |2), as we can check for each vertex in |V | if it is in the polygon805

formed by the exterior boundary R and every check takes O(|R|) [24]. The while

loop from Lines 7 to 10 takes time O(|V ′|) and at most O(|V |), as it basically

visits each vertex in V ′ once. Therefore, the time complexity of Algorithm 2 is

O(m+ |V | ∗ |V |2) = O(m3).

Proof (Proof of Proposition 3.9). To expand a strip efficiently, we can810

scan through h(ai) at the very beginning of the algorithm, and for each cell

store the left and right boundary of the horizontal expansion of the cell. That

takes O(m2) time. Then for each strip, we can visit the cells in it only once to

find out the left and right boundary of the maximal rectangle containing the

strip. As the number of cells in each strip is at most m, ExpandStrip(s) takes815

O(m) time. On the other hand, there are at most m columns in h(ai) and for

each column there are at most m strips. So the total number of loops is O(m2).

Therefore, the total time complexity is O(m2 +m2 ∗m) = O(m3).

Proof (Proof of Proposition 3.12). First, it is easy to see that p∗ ≤ p

and |V | = µ1 + 2µ2 + c1 + 2c2. Then by Lemma 3.11, we only need to prove820

c1 ≤ p, because if c1 ≤ p, then µ1 + 2µ2 + c1 + 2c2 = 4p− 2c1 ≥ 4p− 2p = 2p.

To this end, we show that for each type 1 vertex v, there is a rectangle in the

partition such that v is on the boundary of it and no other type 1 vertex is on

the boundary. Note that a type 1 vertex is associated to a type 1 chord. Let dv

be the chord that v is associated to, and mv be the rectangle containing dv on825

the right side of mv (the existence of such mv is easy to see). By the definition

of type 1 vertex, no other type 1 vertex lies on the right side of mv, but by

the construction, any type 1 vertex lies on the right side of its corresponding

rectangle. Therefore, for v′ 6= v being another type 1 vertex, we have mv 6= mv′ .

Thus c1 ≤ p.830

Proof (Proof of Proposition 3.13). The “if” part is easy to see. For the

39

“only if” part, suppose [mbr(ai)]
◦ ∩ χ(aj) 6= ∅. If mbr(ai) ⊆ χ(aj), then the

conclusion is obvious. If mbr(ai) 6⊆ χ(aj), then one of the edge of χ(aj) has

intersection with mbr(ai). Note that [mbr(ai)]
◦ ∩ [mbr(aj)]

◦ = ∅, such an edge

must totally pass through mbr(ai). Because ai is connected, this edge has an835

intersection with a boundary point or an interior point of ai, say p = (x0, y0). By

taking an open neighbourhood B(p, ε) of p s.t. B(p, ε) is contained in mbr(ai),

we know B(p, ε) ∩ a◦i is an open set in a◦i ∩ χ(aj), That is, a◦i ∩ χ(aj) 6= ∅.

Proof (Proof of Proposition 3.14). Note that the removed regions must

be among χ(aj) ∩mbr(ai), where χ is a CDC tile. As there are nine CDC tiles840

for aj , we only need to consider those nine rectangle regions given by the nine

CDC tiles. If two rectangle regions of those are edge-touching with each other,

then they can be combined. So we can consider only rectangles regions that

are not edge-touching with each other. If five or more rectangle regions are

removed, then the O-tile region of aj will be one of them. This results in only845

one option, as shown in Figure 9(a). The relation δ(ai, aj) is {N,W,S,E}, and

thus rectangle regions in mbr(ai) formed by the intersection with the NW-, NE-,

SW-, SE-, and O-tiles will be removed. Note, however, if this is the case, then

ai cannot be interiorly connected, which is a contradiction.

An example of four rectangle regions being removed is shown in Figure 9.850

The relation δ(ai, aj) is {N,W,S,E,O}.

References

[1] S. Wang, D. Liu, Knowledge representation and reasoning for qualitative

spatial change, Knowledge-Based Systems 30 (2012) 161–171.

[2] Y. Du, F. Liang, Y. Sun, Integrating spatial relations into case-based rea-855

soning to solve geographic problems, Knowledge-Based Systems 33 (2012)

111–123.

[3] B. A. El-Geresy, A. I. Abdelmoty, SPARQS: a qualitative spatial reasoning

engine, Knowledge-Based Systems 17 (2004) 89–102.

40

[4] W. Liu, X. Zhang, S. Li, M. Ying, Reasoning about cardinal directions860

between extended objects, Artificial Intelligence 174 (2010) 951–983.

[5] A. G. Cohn, S. Li, W. Liu, J. Renz, Reasoning about topological and

cardinal direction relations between 2-dimensional spatial objects, Journal

of Artificial Intelligence Research 51 (2014) 493–532.

[6] M. Mantle, S. Batsakis, G. Antoniou, Large scale distributed spatio-865

temporal reasoning using real-world knowledge graphs, Knowledge-Based

Systems 163 (2019) 214 – 226.

[7] J. O. Wallgrün, Exploiting qualitative spatial reasoning for topological ad-

justment of spatial data, in: Proceedings of the 20th International Confer-

ence on Advances in Geographic Information Systems, 2012, pp. 229–238.870

[8] M. A. Rodŕıguez, M. J. Egenhofer, A. D. Blaser, Query pre-

processing of topological constraints: Comparing a composition-based with

neighborhood-based approach, in: Proceedings of the 10th International

Symposium on Spatial and Temporal Databases, 2007, pp. 362–379.

[9] P. Fogliaroni, Qualitative spatial configuration queries – Towards next gen-875

eration access methods for GIS, Ph.D. thesis, University of Bremen, Ger-

many, 2012.

[10] Z. Long, M. Duckham, S. Li, S. Schockaert, Indexing large geographic

datasets with compact qualitative representation, International Journal of

Geographical Information Science 30 (2016) 1072–1094.880

[11] Z. Long, S. Schockaert, S. Li, Encoding large RCC8 scenarios using rectan-

gular pseudo-solutions, in: Proceedings of the 15th International Confer-

ence on the Principles of Knowledge Representation and Reasoning, 2016,

pp. 463–472.

[12] M. Duckham, L. Kulik, Simulation of obfuscation and negotiation for lo-885

cation privacy, in: Lecture Notes in Computer Science, 2005, pp. 31–48.

41

[13] G. E. Ligozat, Reasoning about cardinal directions, Journal of Visual

Languages and Computing 9 (1998) 23–44.

[14] I. Navarrete, A. Morales, G. Sciavicco, M. A. Cardenas-Viedma, Spatial

reasoning with rectangular cardinal relations, Annals of Mathematics and890

Artificial Intelligence 67 (2013) 31–70.

[15] R. K. Goyal, M. J. Egenhofer, The direction-relation matrix: A represen-

tation for directions relations between extended spatial objects, in: Pro-

ceedings of the Annual Assembly and the Summer Retreat of University

Consortium for Geographic Information Systems Science, 1997, pp. 22–81.895

[16] R. K. Goyal, M. J. Egenhofer, Similarity of cardinal directions, in: Proceed-

ings of 7th International Symposium on Spatial and Temporal Databases,

2001, pp. 36–58.

[17] S. Skiadopoulos, M. Koubarakis, Composing cardinal direction relations,

Artificial Intelligence 152 (2004) 143–171.900

[18] W. Liu, S. Li, Reasoning about cardinal directions between extended ob-

jects: The np-hardness result, Artificial Intelligence 175 (2011) 2155–2169.

[19] Y. Izmirlioglu, E. Erdem, Qualitative reasoning about cardinal directions

using answer set programming, in: Proceedings of the 32nd AAAI Confer-

ence on Artificial Intelligence, 2018.905

[20] M. J. Egenhofer, J. Sharma, Assessing the consistency of complete and

incomplete topological information, Geographical Systems 1 (1993) 47–68.

[21] S. Li, Z. Long, W. Liu, M. Duckham, A. Both, On redundant topological

constraints, Artificial Intelligence 225 (2015) 51–78.

[22] L. H. Karlsen, M. Giese, An efficient representation of general qualitative910

spatial information using Bintrees, in: Proceedings of the 13th Interna-

tional Conference on Spatial Information Theory, 2017, pp. 4:1–4:15.

42

[23] L. H. Karlsen, M. Giese, Qualitatively correct bintrees: an efficient repre-

sentation of qualitative spatial information, GeoInformatica (2019) 1–43.

[24] J. O’Rourke, Computational Geometry in C, Cambridge university press,915

1998.

[25] J. C. Culberson, R. A. Reckhow, Covering polygons is hard, Journal of

Algorithms 17 (1994) 2–44.

[26] D. S. Franzblau, D. J. Kleitman, An algorithm for constructing regions with

rectangles: Independence and minimum generating sets for collections of920

intervals, in: Proceedings of the 16th Annual ACM Symposium on Theory

of Computing, 1984, pp. 167–174.

[27] V. Kumar, H. Ramesh, Covering rectilinear polygons with axis-parallel

rectangles, SIAM Journal on Computing 32 (2003) 1509–1541.

[28] D. S. Franzblau, Performance guarantees on a sweep-line heuristic for925

covering rectilinear polygons with rectangles, SIAM Journal on Discrete

Mathematics 2 (1989) 307–321.

[29] P. Fogliaroni, P. Weiser, H. Hobel, Qualitative spatial configuration search,

Spatial Cognition & Computation 16 (2016) 272–300.

[30] A. Guttman, R-trees: A dynamic index structure for spatial searching,930

in: Proceedings of the 1984 ACM SIGMOD International Conference on

Management of Data, 1984, pp. 47–57.

[31] N. Beckmann, H. Kriegel, R. Schneider, B. Seeger, The R*-tree: An effi-

cient and robust access method for points and rectangles, in: Proceedings

of the 1990 ACM SIGMOD International Conference on Management of935

Data, 1990, pp. 322–331.

[32] D. Papadias, Y. Theodoridis, T. Sellis, The retrieval of direction relations

using R-trees, in: Proceedings of the 5th International Conference on

Database and Expert Systems Applications, 1994, pp. 173–182.

43

[33] D. A. Randell, Z. Cui, A. G. Cohn, A spatial logic based on regions and940

connection, in: Proceedings of the 3rd International Conference on Princi-

ples of Knowledge Representation and Reasoning, 1992, pp. 165–176.

[34] M. J. Egenhofer, R. D. Franzosa, Point-set topological spatial relations,

International Journal of Geographical Information System 5 (1991) 161–

174.945

44

	Introduction
	Preliminaries and Background
	Related work

	The New Compact Representation Approach
	Geometric representation
	The induced grid and necessary cut of D
	Calculation of the necessary cut of D
	Compact representation of h(ai)
	The polygon representation
	The rectangle representation
	Storage space analysis

	Compact geometric representation of CDC relations
	Answering queries with compact geometric representations

	Empirical Evaluation
	Storage size
	Answering query

	Implications and Limitations
	Theoretical and managerial implications
	Limitations and future work

	Conclusion
	Proofs of Propositions

