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Abstract

Dimensionality reduction is an important data preprocessing technique that has been exten-
sively studied in machine learning and data mining. Locality Preserving Projection (LPP)
is a widely used linear unsupervised dimensionality reduction method, which maps high-
dimensional data into low-dimensional subspace through linear transformation. Although
various variants of LPP have been proposed to tackle different drawbacks of LPP, it is
identified in this article that LPP does not possess the important topological property of
translation invariance, that is, the linear transformation given by LPP is strongly related
to the relative position between the data and the origin of the coordinate system. In this
article, we theoretically analyze the reason why this drawback exists in LPP and propose
to resolve it by introducing a kind of centralization to the model. Moreover, as topological
properties are prominent information to characterize the structure of the data, this article
proposes a further improvement of LPP to maintain topological connectivity of data after
dimensionality reduction. Experiments on multiple synthetic and real-world datasets show
that the new model incorporating topological properties outperforms not only the origi-
nal LPP model but also several other classic linear or non-linear dimensionality reduction
methods.

Keywords: Dimensionality reduction, linear projection, LPP, translation invariance,
connectivity

1. Introduction1

The era of big data brings us the problems of complexity, diversity and high dimension-2

ality in data, e.g., [1, 2, 3]. If this kind of data are directly used to obtain information,3

there will be not only troubles of irrelevant attributes, but also increased computational4
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complexity and reduced performance. Dimensionality reduction can remove irrelevant infor-5

mation and reduce the complexity of data, and thus has become an important preprocessing6

step in machine learning and data mining. Traditional dimensionality reduction methods7

can be divided into two categories: feature extraction [4, 5] and feature selection [6, 7, 8]8

methods. Feature extraction methods aim to produce new features by mapping the original9

high-dimensional data into low-dimensional space through algebraic transformation. A good10

dimensionality reduction method should retain essential characteristics of data as much as11

possible, and remove redundant information to reveal the underlying structure and pattern12

of data. In addition, dimensionality reduction is also helpful for data visualization. For13

applications, dimensionality reduction has achieved great success in face recognition [9, 10],14

handwritten numeral recognition [11], signature verification [12], disease diagnosis [13] and15

stock selection [14].16

In the past, numerous feature extraction based dimensionality reduction techniques17

have been studied from different aspects. There are supervised, unsupervised, and semi-18

supervised ones according to the availability of label information, and there are linear and19

non-linear ones depending on the corresponding mapping types. For example, Principal20

Component Analysis (PCA) [15] is a classic unsupervised linear technique; Linear Dis-21

criminant Analysis (LDA) [16] is a widely used supervised linear technique, and there are22

many other supervised linear techniques (e.g., [17]); Locally Linear Embedding (LLE) [18],23

t-Distributed Stochastic Neighbor Embedding (t-SNE) [19], Isometric Feature Mapping24

(Isomap) [20] and Laplacian Embedding (LE) [21], and many more (e.g., [22, 23]) are on the25

other hand non-linear techniques. There are also dimensionality reduction methods based26

on nonnegative matrix factorization, e.g., [24, 25].27

Locality Preserving Projection (LPP) [26] is a well-known feature extraction based un-28

supervised dimensionality reduction approach, and it is a linear approximation of LE. LPP29

aims to project the original data through a linear transformation while retaining nearest30

neighbor connections. Several variants have been proposed to deal with different draw-31

backs of LPP. For example, supervised information is exploited in some variants, including32

CLPP [27] and CdLPP [28], which only consider similarities between data points within the33

same class, and LPDP [29] and DLPP [30], which incorporate inter- and intra-class informa-34

tion; L2 norm is replaced by L1 norm to achieve better robustness, e.g., 2D-DLPP-L1 [31]35

and ILPP-L1 [32], where the latter also proposes to preserve similarities between points and36

their neighbors in addition to dissimilarities; similarity measure calculation is also improved,37

e.g., LAPP [33] adaptively measures similarities in new representations obtained by applying38

LPP iteratively.39

Although LPP has been shown to perform well on various datasets, it is surprising to40

notice that its selected directions for projection are very sensitive to the coordinate system41

for data points. In fact, by only changing the position of the data points in the coordinate42

system, i.e. translating the data points as a whole, the projection directions given by LPP43

might change significantly, though the relative positions of data points are not changed (cf.44

Figure 1). This means LPP does not possess an important topological property that is45

translation invariance.46

In fact, taking topological properties into account for data analysis is a trending topic47
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known as topological data analysis (TDA) [34]. One of the main differences of TDA ap-48

proaches from traditional statistical learning ones is that, the former concern more about49

local or global structural information, such as compactness, connectivity, or algebraic prop-50

erties like persistent homology [35], whereas the latter are more interested in distribution51

characteristics of data. Having seen its merits, researchers applied TDA to various fields52

and tasks, e.g., image processing [36], classification [37], and bioinformatics [38].53

This article repairs the topological property of translation invariance by introducing a54

kind of centralization to the LPP model. Moreover, as topological properties concern im-55

portant information of data (e.g., the number of connected components in data is important56

structural information), we propose a novel characterization of the latent topological struc-57

ture of data, viz. topological connectivity, which reflects connections of different parts of data,58

and empirically show that it is useful to retain this kind of topological information when59

performing dimensionality reduction. Existing works [18, 21] usually consider maintaining60

connectivity between points and their neighbors, including LPP, LE, and LLE. In other61

words, they only capture local structures, but ignore higher level structures like connected62

components (cf. Figure 4). However, these higher level structures can reveal important in-63

formation of data, e.g., similarity and separation between data points in these structures64

should also be maintained after dimensionality reduction. Therefore, the approach proposed65

here not only tries to capture local structures, but also explores these higher level ones by66

constructing topological connectivity of data.67

There are LPP variants that consider maintaining certain kinds of structures of data.68

For example, 2D-DLPP-L1 [31] proposes to maintain relative positions of image pixels by69

using matrices instead of vectors for finding projection subspaces. It considers structural70

information within each sample instead of among data points, which is different from the71

approach in this article. SSTNTL [39] makes use of supervised information to remove72

connections between points in different classes, and then reduces dimensionalities of data by73

using the new connection graph. It constructs topology on data points to help characterize74

similarities between points, but does not care about topological structural information like75

connected components.76

The contributions of the article are as follows:77

• We identify, theoretically analyze, and resolve the problem of the original LPP model78

that it is highly sensitive to geometric translation, i.e., the projection directions change79

significantly when data are moved around in the coordinate system.80

• We propose to retain topological connectivity of data in dimensionality reduction, by81

exploring connectivity information in variant scales with novel connectivity measures82

for data, and devise an improved projection model for such purpose.83

• We demonstrate the effectiveness of the improved model and its superiority over LPP84

and several other classic dimensionality reduction methods on multiple synthetic and85

real-world datasets.86

The rest of this paper is arranged as follows. Section 2 briefly introduces the original LPP87

model. Section 3 analyzes the identified problems of LPP in details and proposes an improved88
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model (ConLPP) and its corresponding algorithms. Section 4 evaluates the performance of89

the new method on both synthetic and real-world datasets. Section 5 concludes the paper.90

2. Preliminaries91

Given a dataset X = (x1, x2, . . . . . . , xm), where xi ∈ Rn is a column vector with n92

feature values. A linear projection can be described by a matrix An×d which maps X to93

Y = (y1, y2, . . . . . . , ym), where yi ∈ Rd and yi = ATxi.94

2.1. Locality Preserving Projection95

Locality Preserving Projection (LPP) is an unsupervised dimensionality reduction model,
which tries to preserve the neighborhood structure of data. It is a linear approximation of
Laplacian Eigenmaps (LE), and can achieve better results than LE on various types of
data. The goal of LPP is to select several projection directions ai ∈ Rn (1 ≤ i ≤ d) to
form a projection matrix A = (a1, . . . , ad), so that the projected data ATX can satisfy
that nearest neighboring points are still neighbors. In order to achieve this goal, LPP
constructs argmina

∑
i,j(a

Txi − aTxj)
2Wij as the optimization goal, where Wij is a value

characterizing the similarity between xi and xj. LPP adds the constraint aTXDXTa = 1
to avoid the influence of scaling on the projection directions, where D is a diagonal matrix
s.t. Dii =

∑
jWij. So the LPP model can be expressed as

argmina
∑
i,j

(aTxi − aTxj)2Wij, s.t. aTXDXTa = 1. (Model 1)

The following lemma shows that the objective function of Model 1 can be written in matrix-96

vector form.97

Lemma 1 ( [26]).
∑

i,j(a
Txi − aTxj)2Wij = aTXLXTa, where L = D−W is a Laplacian98

matrix and D is a diagonal matrix s.t. Dii =
∑

jWij.99

Model 1 is then equivalently transformed to Model 2 below:

argmina a
TXLXTa s.t. aTXDXTa = 1. (Model 2)

The steps to solve Model 2 of LPP are as follows.100

1. Construct the adjacency matrix:101

If xi and xj are neighbors, then Wij = exp(−‖xi−xj‖
2

t
) is used to represent the similarity102

between xi and xj; otherwise Wij is set to 0. There are two common ways to determine103

neighbors:104

(a) ε-neighborhood. For a given parameter ε > 0, if ‖xi − xj‖2 < ε, then xi and xj105

are neighbors.106

(b) k−nearest neighborhood. For a given positive integer k, if xi is among the k107

nearest neighbors of xj, or xj is among the k nearest neighbors of xi, then xi and108

xj are neighbors.109

2. Find the d optimal projection directions of Model 2 by calculating the eigenvectors of110

(XDXT )−1XLXT corresponding to the d smallest eigenvalues.111
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2.2. An Equivalent Model of LPP112

It can be easily seen that Model 2 of LPP is also equivalent to the following model.

argmina
aTXLXTa

aTXDXTa
. s.t. aTXDXTa = 1. (Model 3)

In order to solve Model 3, we can first solve the following Model 3* and then adjust the
length of a to satisfy the constraint aTXDXTa = 1. That is, for a being a solution to Model
3* and aTXDXTa = h, let a′ = 1√

h
a, then a′TXDXTa′ = 1 and is a solution to Model 3.

The correctness of this process is ensured by Proposition 2.

argmina
aTXLXTa

aTXDXTa
. (Model 3*)

Proposition 2. If c is a solution to Model 3*, then there is a solution b to Model 3 s.t. the113

direction of c is the same as b, and vice versa.114

Proof. Note that the value of cTXLXT c
cTXDXT c

is only related to the direction of c, not its length,115

i.e., cTXLXT c
cTXDXT c

= (λc)TXLXT (λc)
(λc)TXDXT (λc)

for any λ 6= 0. Therefore, for a solution c of Model 3*, we can116

always find some λ s.t. (λc)TXDXT (λc) = 1, and thus b = λc is also a solution of Model 3,117

whereas c and b have the same direction.118

On the other hand, if b is a solution to Model 3, then b is also a solution to Model 3*.119

This is because, if bTXLXT b
bTXDXT b

is not minimal, then ∃c s.t. cTXLXT c
cTXDXT c

< bTXLXT b
bTXDXT b

and hence ∃λ120

s.t. (λc)TXDXT (λc) = 1 and (λc)TXLXT (λc)
(λc)TXDXT (λc)

= cTXLXT c
cTXDXT c

< bTXLXT b
bTXDXT b

. This means λc is a121

solution to Model 3 and with a smaller objective function value, which contradicts to that122

b is a solution to Model 3. �123

Minimizing aTXLXT a
aTXDXT a

is to balance the two goals: minimizing aTXLXTa and maximizing124

aTXDXTa. Minimizing aTXLXTa is to make the transformed points as close as possible,125

i.e., to maintain neighbors. In next section, we will see that maximizing aTXDXTa is to126

maximize a weighted sum of squares of the distances between the transformed points and127

the origin of the coordinate system. This makes the projection directions found by LPP very128

sensitive to the location of data in the coordinate system, instead of the relative position129

between data points, which is unfavorable in many scenarios. For example, for self-driving130

cars, as the car moves, a static obstacle will be at dynamic positions from the point of131

view of the car, and if LPP is applied for data proprecessing, then this obstacle might not132

be well recognized during the movement, since the projection direction keeps changing and133

the resulting representation might lose important information for some of the projection134

directions. We propose to repair this problem and to consider more topological properties135

to improve the original LPP model.136

3. ConLPP Algorithm137

We improve LPP from two aspects, i.e., repairing translation invariance and introducing138

topological connectivity. In the following, we discuss them in details.139
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3.1. Translation Invariance140

3.1.1. Analysis141

In the objective function of Model 3 of LPP, the term aTXDXTa is strongly affected by142

the specific coordinates of data points. This means that for different coordinates of the data143

points, even when the relative positions of them are the same, LPP might produce signif-144

icantly different projection directions, i.e., LPP is very sensitive to geometric translations.145

Take Figure 1 as an example. In this figure, there are five groups of data and each group146

has two clusters, where the distributions of the data are exactly the same between groups147

(different groups are simply geometric translations of each other), but their positions in148

the coordinate system are different. Arrows represent projection directions found by LPP,149

and the points on an arrow represent the data after projection on that direction. It can150

be seen from the figure that the projection directions vary significantly across these five151

groups although the distributions of points in different groups are the same. Notably, the152

change of directions will significantly affect the resulting representation after dimensionality153

reduction: some directions might destroy the structure within a group, resulting in a large154

overlap between data points in the two clusters within a group.155

4 2 0 2 4
1.0

0.5

0.0

0.5

1.0

1.5

2.0

Figure 1: LPP projection results for geometric translations of the same group of data.

In order to analyze why LPP is seriously affected by coordinates, we make the following156

observation.157

Proposition 3. aTXDXTa =
∑

(aTxi)
2Dii.158
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Proof. Recall that X = (x1, x2, · · · , xm), then∑
i

(aTxi)
2Dii =

∑
i

(
aTxi

) (
aTxi

)T
Dii

=
∑
i

aT
(
xiDiix

T
i

)
a

= aT

(∑
i

xiDiix
T
i

)
a

= aT
(

(x1D11, x2D22, · · · , xmDmm) (x1, x2, · · · , xm)T
)
a

= aTXDXTa.

(1)

�159

Note that (aTxi)
2 is the square of the distance from the projected coordinates to the160

origin. Therefore, by Proposition 3, maximizing the term aTXDXTa is equivalent to max-161

imize the weighted sum of squares of the distance from the projected coordinates to the162

origin, where the weights are Dii (i = 1, . . . ,m). This term in Model 3 of LPP tends to keep163

the data away from the origin after projection. For example, for data with higher density,164

Dii will be larger and this model will be more likely to keep the data points away from the165

origin after projection. This is why max aTXDXTa is strongly affected by coordinates.166

3.1.2. Improvement for Translation Invariance167

In order to reduce the influence of the positions of the data in the coordinate system
for LPP, we propose to centralize the coordinates of data. Let x′i = xi − µ and X ′ =
(x′1, x

′
2 · · ·x′m), where µ =

∑
i xi/m. It is easy to check that ||xi − xj|| = ||x′i − x′j|| for any i

and j. Then, the nearest neighbors of data points do not change, and if we consider Model
3 on X ′, we have

W ′
ij = exp(

−||x′i − x′j||2

σ2
) = exp(

−||xi − xj||2

σ2
) = Wij, (2)

D′ii =
∑
j

W ′
ij =

∑
j

Wij = Dii, (3)

L′ = D′ −W ′ = D −W = L. (4)

Therefore, an improved model of Model 3 for LPP can be proposed to repair translation
invariance as follows.

arg min
a

aTX ′LX ′Ta

aTX ′DX ′Ta
s.t. aTX ′DX ′Ta = 1. (Model 4)

The relation between Model 3 of LPP and Model 4 can be seen from the following168

proposition.169
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Proposition 4. aTX ′LX ′Ta is equal to aTXLXTa, but when µ 6= 0, aTX ′DX ′Ta is not170

always equal to aTXDXTa.171

Proof. From Lemma 1, we know that aTXLXTa =
∑

i,j(a
Txi − aTxj)2Wij, and similarly

aTX ′LX ′Ta =
∑

i,j(a
Tx′i − aTx′j)2W ′

ij. Note that∑
i,j

(aTx′i − aTx′j)2W ′
ij =

∑
i,j

(aT (xi − µ)− aT (xj − µ))2Wij

=
∑
i,j

(aTxi − aTxj)2Wij.
(5)

Therefore,
∑
aTX ′LX ′Ta =

∑
aTXLXTa. On the other hand, by Proposition 3, aTXDXTa =172 ∑

(aTxi)
2Dii, and similarly aTX ′DX ′Ta =

∑
i(a

T (xi − µ))2Dii It is easy to see that gener-173

ally when µ 6= 0 then
∑

(aTxi)
2Dii is not equal to

∑
i(a

T (xi − µ))2Dii.174

�175

In fact, from the proof, we can see that the term aTXDXTa in Model 3 of LPP corresponds176

to the “weighted distance” of data points to the origin, whereas aTX ′DX ′Ta of Model177

4 corresponds to the “weighted distance” of data points to the center of them, which is178

invariant w.r.t. geometric translations of data. In addition, it is also easy to see that179

aTX ′LX ′Ta =
∑

i,j(a
Tx′i− aTx′j)2W ′

ij is also invariant w.r.t. geometric translations of data.180

Then we have the following conclusion.181

Theorem 5. For any dataset X, the projection directions found by Model 4 are independent182

of geometric translations of the data.183

Figure 2 illustrates the projection of the same data as in Figure 1 with Model 4. We184

can see that the projection directions are not affected by the relative position of data to the185

origin.186

4 2 0 2 4
1.0

0.5

0.0

0.5

1.0

1.5

2.0

Figure 2: Projection results of the improved Model 4 for geometric translations of the same group of data.
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Note that aTX ′DX ′Ta =
∑

i(a
T (xi − µ))2Dii. In particular, when Dii = 1, aTX ′DX ′Ta

degenerates to ∑
i

(aT (xi − µ))2 =
∑
i

(
aTxi − aTµ

) (
aTxi − aTµ

)T
= aT

(∑
i

(xi − µ) (xi − µ)T
)
a

(6)

In this situation, argmax
∑

i(a
T (xi−µ))2 is exactly the goal of PCA, that is, to keep the data187

as separated as possible. Therefore, argmax
∑

i(a
T (xi−µ))2Dii can be regarded as a weighted188

PCA model, s.t. the points with higher density will have higher weights. Therefore, Model189

4 is equivalent to finding the projection directions that locally make the nearest neighbors190

of data as close as possible, and globally maintain the weighted separation of data as much191

as possible. The chosen directions balance these two optimization objectives.192

3.2. Topological Connectivity193

Although Model 4 repairs the translation invariance property of LPP, it ignores the inter-194

mediate structures that are between local nearest neighborhoods and global data separation.195

In fact, data usually have several clusters, and clusters may be connected or separated. How-196

ever, the original LPP and the revised Model 4 do not care about these structures, and this197

may result in poor projection results when the data structure is relatively complex. For198

example, consider Figure 3. The left of the figure shows the projection of the original data199

by LPP, and the right shows the projection by Model 4. As both LPP and Model 4 only200

consider to keep local neighboring points close and to maintain global separation of the201

whole data, but ignore intermediate structures, the dimensionality reduction results of them202

have obvious overlaps between data from different clusters. The main reason is that the203

two smaller clusters were taken as a whole for global separation, and the two models did204

not consider separating them as the main optimization goal. We argue that this kind of205

intermediate separation information can be captured by topological connectivity.206

3.2.1. Topological Space and Its Connectivity207

Connectivity is a fundamental concept in topology. Before discussing topological con-208

nectivity of a dataset, we briefly introduce the concepts related to topological connectivity,209

and more details can be found in [40].210

For a nonempty set X, let T ⊆ 2X be a family of subsets of X. If T contains ∅ and211

X, and is closed with respect to set union operation and finite intersection operation, then212

T is called a topology on X. The elements in T are called open sets, and (X,T ) is called213

a topological space. A closed set in (X,T ) is a subset of X whose complement is an open214

set. Suppose (X,T ) is a topological space and Y ⊆ X. Then the subspace topology TY is215

a topology on Y such that V ∈ TY iff there is a U ∈ T and V = U ∩ Y . For example, the216

n-dimensional Euclidean space Rn, with the topology in which all the open balls are open217

sets, is a topological space, called the Euclidean topological space. Here, an open ball B(x, δ)218

in Rn is B(x, δ) = {y | d(x, y) < δ}. A subspace topology of the Euclidean topological space219
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Figure 3: Illustration of the problems of the original LPP model and the improved Model 4.

R2 could be TY for Y = {x | ||x|| ≤ 2}. Topology can be used to characterize the relative220

distance between data points. For instance, if x ∈ Rn, and y ∈ B(x, 1/5), z /∈ B(x, 1/3) can221

characterize that y is closer to x than z is.222

Topology can also characterize connectivity information of data. A topological space is223

said to be connected if and only if there is no nonempty set U in it such that both U and224

its complement are open sets. Therefore, if a topological space is not connected, then it can225

be divided into disjoint parts, i.e., connected components.226

Definition 1. Suppose (X,T ) is a topological space, Y ⊆ X, and Y 6= ∅. Then Y is a227

connected component of (X,T ) iff (Y, TY ) is connected and for all Y ′ s.t. Y ⊂ Y ′ ⊆ X,228

(Y ′, TY ′) is not connected.229

If (X,T ) is connected, then X itself is the unique connected component of (X,T ); if230

(X,T ) is not connected, then X can be decomposed into several connected components.231

When two points x, y ∈ X are in different connected components, we say x and y are strongly232

separated. Take Figure 4(a) as an example. The two geometries shown in it together form a233

topological subspace of R2, which is not connected but contains two connected components.234

235

In practice, path connectivity is usually used to characterize connectivity of a set in a236

topological space.237

Definition 2 (Path connectivity). Suppose (X,T ) is a topological space, and x, y ∈ X.238

Then if there is a continuous map f from [0, 1] to X, such that f(0) = x and f(1) = y, then239

f is a path from x to y. In this case, x and y are said to be path connected. A topological240

space (X,T ) is path connected if any two distinct x, y ∈ X are path connected.241

10



(a) (b) (c)

Figure 4: Illustration of connected components in a topological subspace and connectivity of data points.

In Euclidean space, a path between two points x and y is a continuous curve connecting242

x and y. Note that a path connected topological space is also connected, but the other243

way around generally is not true. However, for most of the practical cases, a connected244

topological space is also path connected, e.g., for a connected component in Figure 4(a),245

it is both connected and path connected. We also have the following properties for path246

connectivity.247

Lemma 6. Suppose (X,T ) is a topological space, and x1, x2, x3 ∈ X.248

• If x1, x2 and x2, x3 are path connected then x1, x3 are path connected.249

• If x1 and x2 are path connected, then x1 and x2 are in the same connected component.250

To maintain the structure of data during dimensionality reduction, connectivity infor-251

mation of data is an important aspect to consider. Topological connectivity provides a252

promising candidate to model such information. However, as we usually do not have all of253

the data points from a topological subspace, but only some samples of them, and sometimes254

even the whole data subspace itself may be a discrete set. For example, in Figure 4(b), we255

only have some sample data points from the topological subspace in Figure 4(a), and thus256

we have to use only these sample data points to discover the structural information of the257

whole topological subspace.258

In the following, we will discuss how to model connectivity for sample data points with259

the idea of topological connectivity. The general idea is to approximate connectivity of260

a sample space by exploring a kind of “path connectivity” of data points and constructing261

connected components with such information. Once connectivity and separation information262

is available, we can compute similarity and separation measures for data points and thus263

incorporate more topological information into the dimensionality reduction model.264
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3.2.2. Connectivity of Data265

Suppose X = (x1, x2, . . . , xm) contains the sample data points. For every xi ∈ X we266

denote by Nk (xi) the nearest k neighbors of xi and we require xi ∈ Nk(xi). Intuitively, a267

connected component in a topological space consists of two kinds of points: inner points and268

boundary points. To distinguish between these points, we exploit the concept of density, as269

inner points usually have higher density than boundary points.270

Definition 3 (Density of points). For each xi ∈ X, we define the density of xi as fol-
lows:

ρ(xi) =
∑

xj∈Nk(xi)\{xi}

exp(−
d2ij
σ2

), (7)

where dij is the Euclidean distance between xi and xj.271

The density of data points reflects the tightness of the distribution of data points in the local272

area. The inner-most point of a connected component tends to have the highest density,273

and this point is called a core point.274

Definition 4 (Leader point and core point). Denote by R(xi) the leader point of xi ∈275

X. Then R(xi) can be defined as follows. If the density of xi is greater than that of any276

x ∈ Nk(xi) \ {xi} then R(xi) = xi, otherwise R(xi) = xj, where xj is the data point with277

higher density than xi in Nk(xi) that is closest to xi (if there are multiple, then we select278

the first met one). We call xi a core point if R(xi) = xi.279

The leading relationship reflects connectivity to some extent. Generally, a point with280

higher density is considered to be more representative for data. A point is likely to be con-281

nected to some of its nearest neighbors, and the most possible connection happens between282

this point and its nearest neighbor that has higher density (i.e. more representative). There-283

fore, we consider there is a path between each point and its leader point, and they are in284

the same connected component of a topological subspace. Thus, a point and its leader point285

should be in the same connected component. In order to formally characterize connected286

component with the help of the leading relationship between points, we need to define the287

leader set of a point.288

Definition 5 (Leader set). For each x ∈ X, S(x) is the leader set of x, which is recursively289

defined as follows:290

• R(x) ∈ S(x);291

• If y ∈ S(x), then R(y) ∈ S(x).292

For convenience, we also call a point y in S(x) a leader of x. It is easy to see that if z is293

a core point then S(z) = {z}. In the following, we also identify the set of the points whose294

leader set contains the core point z, as a density branch, inspired by [41], and identify the295

nearest k neighbors of each point in a density branch as an expanded density branch.296
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Definition 6 (Density branch and expanded density branch). For each core point297

z, we call the set of points that have z as a leader, i.e., D(z) = {x | z ∈ S(x)}, the298

density branch of z. We also define the expanded density branch of a core point z as299

E(z) = ∪x∈D(z)Nk (x).300

It can be seen from the definition that there is a 1-1 correspondence between density301

branches and core points, i.e., a density branch contains exactly one core point and each302

core point has a density branch.303

Different density branches may belong to the same connected component and this hap-304

pens if they are closely adjacent, that is, they have enough shared nearest neighbors. The305

shared nearest neighbors of two core points z1 and z2 is the set SNN(z1, z2) = E(z1)∩E(z2).306

307

Definition 7 (Connectivity). Given two core points z1 and z2, the density branches D(z1)308

and D(z2) are connected if | SNN(z1, z2)| > τ ×min{|E(z1)| , |E(z2)|}, where τ is some given309

threshold parameter. Furthermore, if D(z1) is connected with D(z2) and D(z2) is connected310

with D(z3), then we also say D(z1) is connected with D(z3). For any two point xi ∈ D(z1)311

and xj ∈ D(z2), xi and xj are said to be connected if D(z1) is connected with D(z2).312

Here, the idea is to consider a point x is connected with its leaders and thus the points in313

each density branch are connected with each other, and two density branches are connected if314

they have enough shared neighbors (τ is set as 0.05 in experiments). Figure 4(c) illustrates315

this idea. In this figure, each point is connected with its leaders and the points with a316

red circle are core points. Each core point determines a density branch in which each317

pair of points have a path between them. Expanded density branches are illustrated as318

regions bounded by dashed lines. For two density branches, if they share enough neighbors319

and thus have strong connection with each other, then we consider them as connected.320

Although there is no path between points in two connected density branches, we think they321

have a high possibility to be connected in the original topological subspace. In this way, we322

obtain connected components of data points, and these components approximate those in323

the original topological subspace.324

Definition 8 (Connected component). A connected component C for a dataset X is the325

maximal set in which each pair of points are connected.326

Each density branch has a unique core point, which is the leader of every point in this327

density branch. On the other hand, a connected component can contain more than one core328

points. In fact, a connected component is exactly the union of all density branches that329

are connected with each other. That is, C =
⋃l
i=1D(zi), where for any 1 ≤ i, j ≤ l, D(zi)330

and D(zj) are connected, but for any core point z 6∈ {z1, z2, . . . , zl}, D(zi) and D(z) are not331

connected. Roughly speaking, density branches characterize local structural information,332

while connected components captures higher level structural information.333

It is easy to see that the connectivity relation between data points is reflexive, transitive,334

and symmetric. Therefore, the connectivity relation induces a partition of X into disjoint335

connected components, as stated in the following proposition.336
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Proposition 7. Given k and τ , each dataset X is divided into disjoint connected compo-337

nents.338

For example, as shown in Figure 5, given the values of k and τ , for each xi, we can339

calculate Nk(xi) and ρ(xi) by definition. Then we can calculate R(xi) and find all the core340

points of the dataset. After that, for each core point zt we can obtain its density branch341

D(zt) and expanded density branch E(zt). According to Definition 8, the connected density342

branches are combined to obtain connected components {Ck}. The corresponding process is343

shown in Algorithm 1. Note that if the data contain outliers, then there are some connected344

components that contain only few samples. Thus, to remove outliers, only the connected345

components with more than 2 samples are retained by the algorithm.

establishedSNN(𝑧!, 𝑧") > 𝜏×min 𝐸(𝑧!) , 𝐸(𝑧")

𝐸(z!)

𝐸(z")

𝐸(z#)

𝐸(z$)

𝐸(z%)

Figure 5: Illustration of connectivity and constructing connected components of data points.

346

Note that the number of connected components is related to the number of nearest347

neighbors k and the given threshold τ . Given τ , if k = 1, then each data point itself forms348

a connected component; if k = m (m is the total number of data points), then all the data349

points together form a unique connected component. The smaller k is, the more connected350

components there will be; the greater k is, the fewer connected components there will be,351

and more density branches will be merged together. Moreover, if k is small and two points352

are in the same density branch, then they should be considered as very similar. Conversely,353

if k is large and two points belong to different connected components, then they should be354

considered to be obviously different. Therefore, later we will take the results of different k355

into consideration to better capture the structure of data.356

3.2.3. Similarity Matrix and Separation Matrix357

With the connected components information obtained by Algorithm 1, we propose two358

measures to characterize the similarity and difference between points, respectively.359
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Algorithm 1: ExploreStructure

Input: Dataset X; number of nearest neighbors k; threshold parameter τ .
Output: Core points; density branches {D(zi)}; connected components {Ci}

1 Calculate Nk(x), ρ(x) and leader point R(x) for each x ∈ X;
2 Get the core points: Core = {z1, z2, . . . zt};
3 Calculate the density branches: D(z1), D(z2), . . . D(zt);
4 Calculate the expanded density branches: E(z1), E(z2), . . . E(zt);
5 foreach (zi, zj) ∈ Core×Core and zi 6= zj do
6 G[i, j]← 0;
7 SNN(zi, zj)← E(zi) ∩ E(zj);
8 if | SNN(zi, zj)| > τ ×min(|E(zi)|, |E(zj)|) then
9 G[i, j]← 1;

10 Get connected components {Ci} from G;
11 return Core, {D(zi)}, {Ci}.

If two samples xi and xj are in the same density branch then they are very similar, and
we denote a similarity matrix by Sim(k) for a given k to describe the similarity of those
samples, such that

Sim
(k)
ij =

{
exp(−‖xi−xj‖

2

σ2 ) if i 6= j, and ∃zt, xi, xj ∈ D(zt);
0 otherwise,

(8)

where the parameter σ is set as 1% of the square of the largest distance between data points.360

In fact, the performance of the proposed approach is not sensitive to this parameter, so we361

will just apply this setting to all of the experiments.362

On the other hand, if xi and xj are in different connected components then they should363

be considered as dissimilar and dissimilarity will be characterized by a separation matrix.364

The separation matrix is over core points only, instead of all the data points, as core points365

are the most representative ones for separation. For core points, the separation matrix Sep(k)
366

is defined as follows.367

1. When there is only one connected component found by Algorithm 1, the separation
matrix Sep(k) is defined as:

Sep(k) =
1

|Core |2
∑

(zi,zj)∈Core×Core

(zi − zj) (zi − zj)T . (9)

2. When there are more than one connected components found by Algorithm 1, then
we can calculate the separation matrix Sep(k) over pairs of core points from different
connected components. Denote by P (k) the set of all the pairs of zi, zj from different
connected components, then

Sep(k) =
1

|P (k)|
∑

(zi,zj)∈P (k)

(zi − zj) (zi − zj)T (10)
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The corresponding algorithm to calculate Sim(k) and Sep(k) is shown in Algorithm 2.

Algorithm 2: ComputeMatrices

Input: Dataset X; number of nearest neighbors k; threshold parameter τ .
Output: Sim(k), Sep(k)

1 Core, {D(zi)}, {Ci} ← ExploreStructure(X, k, τ)

2 Sim(k) ← (0)m×m;
3 foreach z ∈ Core do
4 foreach (xu, xv) ∈ D(z)×D(z) and xu 6= xv do

5 Sim(k)
uv ← exp(−‖xu−xv‖

2

σ2 );

6 M ← ∅;
7 if |{Ci}| > 1 then
8 foreach (zu, zv) ∈ Core×Core do
9 Cu ← the connected component containing zu;

10 Cv ← the connected component containing zv;
11 if Cu 6= Cv then
12 M ←M ∪ {(zu, zv)};
13 else
14 M ← Core×Core;

15 Sep(k) = 1
|M |

∑
(zu,zv)∈M

(zu − zv)(zu − zv)T ;

16 return Sim(k), Sep(k).

368

3.3. Dimensionality Reduction Algorithm369

As we have mentioned before, the value of k will influence the number of connected370

components and thus influence the structure of data revealed by these components. For371

example, we increase the value of k from k1 to k2 and the results are shown in Figure 6. When372

k = k1, there are 7 connected components; when k is increased to k2, the two connected373

components C11 and C12 are merged, and the same happens to C15 and C16; when k is374

increased even larger to k3, more components are merged and a higher level structure of the375

data is then revealed.376

Inspired by this observation, we vary the value of k to explore the structure of data in377

different scales. Several similarity matrices and separation matrices will be obtained through378

the process, and we propose to combine these matrices by a weighted sum. As the similarity379

with a smaller k will be more significant than that with a larger k, we assign larger weight380

to Sim(k) for a smaller value of k. On the other hand, we assign larger weight to Sep(k) for381

a larger value of k, since the separation with a larger k will be more significant.382

In particular, the similarity matrix and the separation matrix will defined as follows.383
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Figure 6: Illustration of the effect of different values of k on constructing connected components.

Sim =
l∑

i=1

exp( 1
ki

)∑l
i=1 exp( 1

ki
)

Sim(ki); (11)

Sep =
l∑

i=1

exp(ki)∑l
i=1 exp(ki)

Sep(ki) (12)

The original model of LPP is thus improved by combining the idea in Model 4 and the384

connectivity measures, as below.385

argmina
aTX(L+ L∗)XTa

aT (XD∗XT + Sep) a
, s.t. aT (XD∗XT + Sep)a = 1. (ConLPP)

where X = (x1 − µ, . . . , xm − µ), L∗ = D∗ − Sim, and D∗ is a diagonal matrix and D∗ii =386 ∑|X|
j=1 Simij. Note that the constraint here is just to change the length of the projection387

vectors and thus to scale the coordinates after projection (cf. Proposition 2). One can also388

remove this constraint and use unit projection vectors instead to have orthogonal projections,389

or any other lengths of interest.390

The above optimization problem is a typical Rayleigh quotient problem and can be solved391

by calculating eigenvectors. Let S1 = X(L + L∗)XT and S2 = XD∗XT + Sep. Then the392

solution of the above optimization problem is the eigenvector corresponding to the smallest393

eigenvalue of S−12 S1, and this eigenvector is the projection direction for dimensionality re-394

duction. When d directions are needed, the eigenvectors of the d smallest eigenvalues are395

then used. The corresponding algorithm is shown in Algorithm 3.396

17



Algorithm 3: ConLPP

Input: Dataset X = (x1, . . . , xm); the range of the numbers of nearest neighbors
[k0, k1]; target dimensionality d; threshold parameter τ .

Output: Projection directions A = (a1, . . . , ad).

1 X ← X − µ, where µ is the average vector of X;
2 foreach k ∈ [k0, k1] do

3 Sim(k), Sep(k) ← ComputeMatrices(X, k, τ);
4 Calculate Sim and Sep by Equations 11 and 12;
5 Calculate L, which is consistent with that of LPP;

6 Calculate D∗ = (D∗ii)m×m, where D∗ii =
∑|X|

j=1 Simij;

7 Calculate L∗ = D∗ − Sim;
8 Calculate S1 = X (L+ L∗)XT ;
9 Calculate S2 = XD∗XT + Sep;

10 Calculate the eigenvalues and eigenvectors of S−12 S1, and then sort them in
ascending order;

11 Select the eigenvectors corresponding to the first d non-zero minimum eigenvalues:
λ1, λ2, . . . . . . λd to make up A = ( a1√

aT1 S2a1
, . . . , ad√

aTd S2ad
);

12 return A.

3.4. Time Complexity Analysis and Comparison397

Suppose the number of data points in a dataset is m, the original dimension of data is398

n, the number of core points is t, and the number of nearest neighbors k is in range [k0, k1],399

where the length of the range is l.400

In Algorithm 1, to get Nk(x), ρ(x), R(x), and core points in lines 1 and 2, one can make401

use of a KD-tree, and the time complexity is O((n+k)m logm). To obtain density branches,402

one can descendingly sort the points by their densities ρ(x), and go through the points one403

by one to allocate them to the density branch that their leader point belongs to (if the leader404

point of a point is itself, then this point is a core point and it will be allocated to a new405

density branch). So line 3 of Algorithm 1 takes O(m logm + m) time. Line 4 expands the406

density branches by including the k-nearest neighbors of each point in the density branches,407

so its time complexity is O(km). For two expanded density branches, one can obtain their408

intersection by scanning through one of them and checking if each point of it is also in the409

other one, which takes O(m) time in the worst case. In total, lines 5-9 take O(t2m) time.410

Line 10 can obtain connected components with a depth first search in time O(t2). Therefore,411

the time complexity of Algorithm 1 is O((logm+ k + t2)m).412

For Algorithm 2, line 1 exploits Algorithm 1 and has time complexityO((logm+k+t2)m).413

For lines 3-5, it takes O(n) time to calculate each Sim(k)
uv , and each core point will take414

O(m2
s) steps to obtain all Sim(k)

uv , where ms is the number of points in density branch zs and415 ∑t
s=1ms = m. So the total time for lines 3-5 is O(nm2). Lines 6-14 take O(t2) time, and416

line 15 takes O(n2t2) time. So in total, Algorithm 2 takes O((logm+k+t2)m+nm2+n2t2).417
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The main algorithm ConLPP, i.e. Algorithm 3, basically has similar steps to LPP, with418

additional steps for centralizing X and obtaining Sim and Sep in lines 1-4, where these419

additional steps take O(mn+ l((logm+k+ t2)m+nm2 +n2t2)) time. Lines 5-7 take O(m2)420

time to obtain L, D∗, and L∗. Lines 8-9 take O(nm2 + n2m) time. Lines 10-11 take O(n3)421

to obtain the final projection directions. In summary, the time complexity of ConLPP is422

O(mn+ l((logm+k+ t2)m+nm2 +n2t2)+m2 +nm2 +n2m+n3). As k and l is usually very423

small compared to m and n, the time complexity can be simplified to O((m+n2)t2 +nm2 +424

n2m+n3), or O(nm2) if n� m. This is comparable to LPP, which has the time complexity425

of O(nm2 + n2m + n3), and is also comparable to many other dimensionality reduction426

methods, like t-SNE, LE, and LLE, whose time complexity is O(nm2). For example, on427

a dataset of 2000 points and 649 features, for a target dimensionality of 5, ConLPP takes428

3.98s, and LPP takes 0.54s, whereas LLE takes 0.23s, LE takes 45s, and t-SNE takes 178s.429

4. Empirical Evaluations430

In order to evaluate the proposed model, we conduct experiments on both synthetic and431

real-world datasets, against seven dimensionality reduction baseline methods, i.e., LLE [18],432

PCA [15], LDA [16], LE [21], t-SNE [19], LPP [26], ILPP-L1 [32], and LAPP [33], where433

LLE, LE, and t-SNE are non-linear methods, and LPP, ILPP-L1, and LAPP are LPP based434

methods. LDA is supervised and is used to demonstrate that ConLPP can capture inherent435

structures of data. Note that t-SNE, LLE, PCA, and LDA here are from the scikit-learn436

library and use default parameters; LE, ILPP-L1, and LAPP are implemented according to437

the corresponding papers. The range of k for ConLPP is set to [5, 15].438

4.1. Datasets439

There are one synthetic dataset and 14 datasets used in the experiments. The synthetic440

dataset is used to show that ConLPP model can repair the problem of LPP for translation441

invariance and can further maintain data connectivity and separation after dimensionality442

reduction. Real-world datasets are used to illustrate the advantages of ConLPP over other443

algorithms.444

The synthetic dataset is visually illustrated in Figure 7. It is sampled from a multivariate445

normal distribution, and contains three clusters of points, each of which has 200 points. The446

details of the 14 real-world datasets are shown in Table 1. Among them, ORL, USPS, COIL-447

20, FashionMNIST, and CIFAR-10 are image datasets, where the last two are testing subsets448

of the original datasets.449

All datasets are standardized, so that the mean value of a dataset is 0 and the standard450

deviation is 1. Note that, in this case, the original LPP and Model 4 are equivalent because451

µ = 0.452

4.2. Results on Synthetic Datasets453

As illustrated in Figure 2, Model 4 reduces the influence of the position of the origin454

on LPP and fixes translation invariance. However, from Figure 3, both LPP and Model 4455
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Figure 7: Visualization of the synthetic dataset.

might project clusters that are originally separated into overlapping ones, because they do456

not consider higher level structural information.457

Figure 8 shows the results of LPP (equivalently, Model 4, as data were standardized) and458

ConLPP into one-dimensional space on the synthetic dataset after standardization. It can459

be seen that LPP makes the originally separated clusters overlapping after dimensionality460

reduction, while ConLPP can maintain the separation state of these clusters after projec-461

tion. The main reason is that the data contain three connected components and ConLPP462

maintains this structure by introducing characterizations of connectivity information into463

the optimization model.464

4.3. Visualization on Real-World Datasets465

Visualization can give a direct and intuitive impression on the performance of maintaining466

the structure of complex high-dimensional data [42]. Figure 9 is the visualization of the467

projection of the points for digits 0 to 9 in the dataset “digital” into two-dimensional plane468

by various algorithms. By comparing ConLPP and LPP, we can find that ConLPP better469

maintains the separation between different clusters and the closeness of data from the same470

cluster, e.g., LPP mixes “2”, “3”, and “8” clusters while ConLPP does not. Note that471

LDA is a supervised dimensionality reduction method, whereas ConLPP is unsupervised472

but has a quite similar results as LDA. This means ConLPP can indeed capture inherent473

structure of the data. The result of t-SNE for visualization is good, but it has several474

disadvantages which can be seen from later experiments: its performance worsens for higher475

target dimensionalities, and it cannot give the projection function which means it cannot476

deal with unseen data points. For the other methods, the advantage of ConLPP is obvious.477
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Table 1: Details of real-world datasets.

Dataset #instances #features #classes

indianliver 583 10 2
congressEW 435 16 2
vote 435 16 2
sonarEW 208 60 2
ORL 400 1024 40
digital 2000 649 10
pengcolonEW 62 2000 2
segmentation 2100 19 7
mfeat-fou 2000 76 10
mfeat-kar 2000 64 10
USPS 9298 256 10
COIL-20 1440 1024 20
FashionMNIST 10000 784 10
CIFAR-10 10000 3072 10

1 0 1 2 3 4
2

1

0

1

2

3

4

LPP
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ConLPP

Figure 8: Projection results of the standardized synthetic dataset by LPP and ConLPP, respectively.
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Figure 9: Visualization results of dimensionality reduction methods for mapping data points representing
“0”-“9” in the dataset “digital” into two-dimensional space.
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Table 2: Results on the real-world datasets in terms of 1NN classification accuracy.

Dataset t-SNE LE LLE PCA LPP ILPP-L1 LAPP ConLPP

indianliver 66.21(1) 67.40(9) 64.14(8) 65.54(4) 66.22(7) 68.45(4) 66.57(2) 68.46(4)
congressEW 92.86(2) 91.48(14) 89.65(7) 92.41(13) 91.73(11) 94.71(10) 93.09(15) 93.33(5)

vote 93.09(2) 93.09(7) 89.42(8) 91.94(14) 91.26(8) 94.47(13) 94.03(8) 94.70(6)
sonarEW 62.92(2) 65.93(6) 69.70(19) 70.18(4) 63.07(5) 69.23(11) 68.90(14) 71.08(19)

ORL 92.24(2) 77.73(18) 86.48(19) 93.00(19) 90.74(19) 73.50(18) 60.75(13) 92.49(9)
digital 97.80(2) 98.10(12) 97.70(13) 97.75(19) 97.05(18) 87.30(19) 98.35(19) 98.45(12)

pengcolonEW 71.03(2) 71.23(10) 72.82(18) 71.23(4) 72.82(5) 66.27(1) 71.43(13) 80.75(1)
segmentation 93.19(13) 88.71(11) 88.62(11) 93.48(13) 93.57(10) 94.00(16) 94.10(7) 93.76(10)

mfeat-fou 79.55(3) 74.65(16) 76.20(16) 75.15(19) 74.65(15) 72.75(19) 81.45(17) 79.90(17)
mfeat-kar 96.00(4) 94.30(19) 94.9(16) 94.75(18) 91.20(14) 87.65(19) 96.15(15) 96.45(15)

USPS 96.91(2) 94.49(19) 96.10(16) 96.20(19) 89.85(19) N/A 83.54(17) 94.67(19)
COIL-20 97.22(4) 89.03(15) 92.5(18) 95.97(18) 93.75(15) 85.77(18) 84.86(15) 99.72(11)

FashionMNIST 81.40(9) 70.58(15) 74.75(19) 79.40(19) 76.60(19) N/A 73.14(19) 77.71(19)
CIFAR-10 30.3(14) 21.76(15) 22.69(17) 30.50(19) 22.25(18) N/A 20.31(19) 19.45(19)

4.4. Evaluation with 1NN on Results Obtained After Dimensionality Reduction478

In this subsection, we first perform dimensionality reduction on the whole dataset, for479

each of the 14 real-world datasets, and then use 1NN [43] to conduct classification on the480

dimensionality reduction results. The motivation is that the performance of 1NN can reflect481

the quality of dimensionality reduction results, illustrating whether points from the same482

class are relatively close and points from different classes are relatively far away from each483

other.484

For each algorithm, the best dimensionality for dimensionality reduction on each dataset485

is determined by first performing dimensionality reduction with target dimensionality from486

2 to 19 and calculating the average accuracy of 1NN in 10-fold cross validation for the487

transformed data, and then selecting the dimensionality with the highest accuracy as the488

best one. Once the best dimensionality is determined, the corresponding average accuracy489

and standard deviation over ten folds is recorded. For ILPP-L1, because its results might490

vary largely for different runs, we perform the aforementioned process ten times for each491

dimensionality and use the highest score in these ten runs as the score of that dimensionality.492

The results are shown in Table 2, where the numbers in braces are the best dimension-493

alities for corresponding algorithms and “N/A” means the corresponding algorithm cannot494

finish in the time limit of 10 hours.495

From Table 2, we can see that on all of the 14 datasets, the average classification accuracy496

of the transformed data by ConLPP is significantly higher than LPP, and is the best in 7497

out of 14 cases and close to the best in most of the other cases. Note that we select the best498

result of ILPP-L1 in 10 runs, so it is not surprising it is better than ConLPP on the dataset499

“congressEW”, where ConLPP outperforms all the others except ILPP-L1; for the datasets500

“segmentation” and “mfeat-fou” where LAPP is the best, we can see that ConLPP is very501

close to the best, and ConLPP actually outperforms LAPP on most of the other datasets502

and the advantage is very significantly on several datasets, e.g., ORL, pengcolonEW, USPS,503

and COIL-20.504
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We also illustrate the results of each algorithm for different target dimensionalities on505

several datasets in Figure 10. From Figure 10, we observe that ConLPP is dominating for506

almost all of the dimensionalities. For ORI and vote, ConLPP shows more stability than507

the others across different dimensionalities. For mfeat-fou and mfeat-kar, although ConLPP508

is not the best in lower dimensionalities, it quickly becomes evidently better than or close509

to the others in higher dimensionalities. These demonstrate the effectiveness of the idea of510

ConLPP for identifying topological structures.511
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Figure 10: Results on four real-world datasets w.r.t. different target dimensionalities in terms of 1NN
classification accuracy.

4.5. Evaluation of Generalization Ability512

In this subsection, instead of finding projection directions based on the whole dataset,513

we first partition the dataset into training set and testing set, and then find projection514

directions on training set and apply them on testing set. The transformed testing set is then515

used to perform 1NN classification with 10-fold cross validation. The partition of training set516

and testing set is also performed 10 times, and the results are averaged. The motivation of517

the experiments here is to evaluate the generalization ability of the proposed dimensionality518

reduction model.519

Particularly, ConLPP is compared against four linear ones of the baseline methods, i.e.,520

PCA, LPP, ILPP-L1, and LAPP, on the dataset “digital” of handwritten numbers. The521

other methods used in this article are not applicable as they have to be based on the whole522
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Table 3: Accuracy results on the dataset “digital” for 1NN classification on transformed testing sets by
different dimensionality reduction methods.

Method 20% 40% 60% 80%

PCA 97.38(19) 97.28(19) 96.72(19) 96.05(19)
LPP 42.06(15) 64.25(9) 93.23(11) 95.43(12)
ILPP-L1 85.49(19) 82.92(19) 81.49(19) 80.27(19)
LAPP 28.31(17) 92.00(15) 97.13(19) 97.49(14)
ConLPP 39.18(8) 87.17(10) 97.17(11) 97.65(11)
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Figure 11: Results on the dataset “digital” w.r.t. different target dimensionalities in terms of 1NN classifi-
cation accuracy on different portions of transformed testing sets.

dataset. The proportion of training set is set to be 20%, 40%, 60% and 80%, respectively.523

Table 3 and Figure 11 show the results.524

From Table 3, it is easy to see that ConLPP can have better results with larger proportion525

of training samples and it performs better than LPP, ILPP-L1, LAPP in these cases. It is526

worth noting that the performance of ConLPP is not ideal when the proportion of training527

samples is very small (20%). This is expected, as in this case the training samples cannot528

accurately reflect the structure of the whole dataset, and the confidence of the structure529

found by ConLPP will be low in this case. This phenomenon becomes clearer in Figure530

11. With relatively larger proportion of training samples, ConLPP can better identify the531

structure of the dataset. Note that for the 40% case, the performance of both LPP and532

ConLPP becomes worse when the target dimensionality is over 10. The reason is that the533
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constraint in the model scales the projection coordinates differently in different dimension,534

which stretches the projected data and affects the performance of 1NN on the transformed535

data. This can be avoided by discarding the constraint but using unit projection vectors.536

In summary, ConLPP can have better generalization ability than LPP, ILPP-L1, LAPP,537

and PCA with relatively larger proportion of training samples (e.g., over 60%), and it is an538

effective model for dimensionality reduction.539
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Figure 12: Illustration of the robustness of ConLPP w.r.t. different ranges of k.

4.6. Parameter Analysis540

Sensitivity to parameters could limit the applicability of a dimensionality reduction541

method in practice. In the proposed ConLPP model, we would like to see how the choice542

of the ranges of k will affect the accuracy of ConLPP. Figure 12 shows the results of 1NN543

classification on the transformed data of the datasets indianliver, mfeat-fou, mfeat-kar, seg-544

mentation and vote, w.r.t. different ranges of k, which are [5, 15], [10, 20], [15, 25], [20, 30],545

and [25, 35], respectively. The results illustrate that the performance of ConLPP is relatively546

stable for different choices of parameters, which is favorable for practical applications.547

5. Conclusion548

This paper proposed a novel model for dimensionality reduction by improving the well-549

known LPP model to maintain topological properties including translation invariance and550

topological connectivity. We demonstrated and analysed the translation sensitivity problem551

of LPP, which, to the best of our knowledge, was not noticed in the literature. We proposed552

a new model to repair this problem and theoretically proved its effectiveness. We also553

proposed to take more topological properties into consideration and devised a novel model554

that considers topological connectivity. Extensive experimental results on synthetic and555

26



real-world datasets demonstrated the effectiveness and superiority of the new model over556

the original LPP model and several other widely used dimensionality reduction models. In557

the future, we plan to incorporate more topological properties to the model so that it can558

discover more complex structures.559
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