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• A novel measure of similarity between local tree-structured clusters to capture complex
structures of data is proposed.

• A new Ncut-based loss function is devised in consideration of tree structures.

• The effectiveness of the proposed algorithm is verified on both real-world and synthetic
complex data sets.
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Abstract

Clustering by fast search and find of density peaks (DPC) is a widely used and studied
clustering algorithm. In this article, we notice that DPC can achieve highly accurate clus-
tering results when restricted to local neighborhoods. Therefore, by investigating density
information in local neighborhoods, we propose to capture latent structures in data with
family trees, which can reflect density dominations among nearest neighbors of data. A
data set will then be partitioned into multiple family trees. In order to obtain the final
clustering result, instead of exploiting the error-prone allocation strategy of DPC, we first
elaborately design a novel similarity measure for family trees, characterizing not only the
distance between data points, but also the structure of trees. Then, we adapt graph cut for
the corresponding connection graph to also take global structural information into account.
Extensive experiments on both real-world and synthetic data sets show that the proposed
algorithm can outperform several prominent clustering algorithms for most of the cases,
including the DPC and spectral clustering algorithms and some of their latest variants. We
also analyze the robustness of the proposed algorithm w.r.t. hyper-parameters and its time
complexity, as well as the necessity of its components through ablation study.

Keywords: Clustering, Density peaks, Spectral clustering, Local density, Similarity
between trees

1. Introduction1

Clustering [1] is an important unsupervised problem in the field of data mining and2

machine learning. It aims to divide a data set into multiple disjoint subsets, where the data3

in each subset are as similar as possible, and the data between subsets are as dissimilar as4

possible [2, 3]. Clustering can reveal inherent or latent knowledge and rules in data and has5

been widely used in scientific research and engineering applications [4, 5].6

In the past decades, a large number of clustering algorithms have been proposed and7

applied in different scenarios. Traditional clustering algorithms can be roughly divided into8
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five categories: division based [6], hierarchical based [7], density based [8], model based [9],9

and grid based [10]. In addition, there are also extensions like spectral clustering [11],10

multi-view clustering [12], clustering ensemble [13] and deep clustering [14]. Each of these11

algorithms has its own advantages and disadvantages for certain type of data or applications.12

Clustering by fast search and find of density peaks (DPC; [15]) is an influential density13

based clustering algorithm. Although shown to perform well on a variety of data, it has14

several problems such as: it cannot properly process data sets with variant densities in15

different part; its usage of Euclidean distance for calculating densities and searching of16

density peaks is not appropriate for manifold structures; its allocation strategy of clusters can17

suffer from the domino effect that the misallocation of one point will result in misallocation of18

all subsequent points. A large number of improvements and extensions of the original DPC19

algorithm were proposed to overcome those problems. For example, KNN-DPC [16] and20

FDPC [17] try to improve DPC by optimizing the calculation of densities; FKNN-DPC [18]21

and SNN-DPC [19] further improve allocation strategy; DLORE-DP [20] and DPC-GD [21]22

introduce geodesic distance to adapt for manifold structures; FastDPeak [22] and DPCG [23]23

optimize computational efficiency.24

On the other hand, in this article, instead of improving density calculation, peak selec-25

tion, or allocation strategy of DPC, we try to make use of certain merit in the idea of DPC26

to devise a new clustering algorithm. In fact, although the allocation strategy of DPC is not27

always reliable globally, it can achieve high purity in small local subsets of data (cf. Fig. 2),28

i.e., locally, points that should be in the same cluster are also allocated to the same cluster.29

By restricting DPC to local neighborhoods, we can obtain tree structures (cf. Fig. 1) that30

reflect density domination relations in local neighborhood, and each of these trees has high31

purity. The aforementioned DLORE-DP considers this kind of local structures as natu-32

ral accumulations of data points, and makes use of DPC to cluster these accumulations in33

the subsequent stage. FHC-LDP [24] uses these local trees as sub-clusters and combines34

them with the help of hierarchical clustering. Besides, ADBC-KNN [25] and CDMC-IA [26]35

exploit the idea of DPC to obtain sub-clusters, and propose strategies to achieve final clus-36

tering, i.e., combining sub-clusters according to density reachability and quantity affinity37

(in a hierarchical clustering way), respectively.38

In this article, we further investigate the properties of such tree-based local structures,39

and propose a novel clustering algorithm (LDP-SC), by designing a more sophisticated40

similarity measure of these trees, and adopting an improved graph cut method. The use41

of graph cut method can better determine whether to combine or to separate these trees,42

because it takes into account more global structural information of data, than hierarchical43

clustering, which mainly considers local information of sub-clusters. This graph cut method44

also avoids the identification of cluster centers, which is an error-prone process, especially45

for complex data.46

This article has the following contributions:47

1. We study the properties of local tree-structured clusters (called family trees), and pro-48

pose a novel similarity measure for such local clusters, which helps to capture complex49

structures of data.50
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2. We exploit the idea of spectral clustering on these local structures to obtain the final51

clustering result, which avoids the error-prone steps of the identification of cluster centers52

and the allocation of clusters.53

3. We improve the loss function for graph cut to better suit local tree-structured clusters.54

4. The proposed algorithm outperforms several prominent baseline algorithms, including55

the DPC and spectral clustering algorithms and some of their latest variants.56

The rest of this article is organized as follows. In Section 2, research works on improving57

the DPC and spectral clustering algorithms in recent years are discussed, as well as work on58

the combination of DPC and spectral clustering. In Section 3, preliminaries for DPC and59

spectral clustering are introduced, as well as an analysis for the motivation of the improve-60

ments proposed in this article. Section 4 gives details on the proposed LDP-SC algorithm.61

Section 5 then presents a number of experiments for empirically evaluating the proposed62

algorithm against some benchmark algorithms from various aspects and on different data63

sets. Section 6 discusses the robustness of the LDP-SC algorithm, and performs ablation64

study to confirm the significance of each component in the algorithm. Section 7 concludes65

the article.66

2. Related Work67

In recent years, a large number of variants of DPC have been proposed to overcome its68

defects. Generally, DPC consists of three essential parts, i.e., the calculation of densities,69

the selection of cluster centers, and the cluster allocation strategy of non-center points.70

KNN-DPC [16] uses K-nearest neighbors to replace the use of cutoff distance for the cal-71

culation of densities. FDPC [17] and FKNN-DPC [18] exploit fuzzy theory to characterize72

uncertainties introduced by the sampling of data points, and thus generalize the calculation73

of densities. FKNN-DPC also modifies the allocation strategy by making use of neighboring74

relations. Based on KNN-DPC and FKNN-DPC, DPC-DBFN [27] uses a fuzzy kernel to75

extract a specific kind of structural information, called density backbone, to improve the76

robustness of clustering. SNN-DPC [19] investigates local structures of data, and charac-77

terizes similarities between data points in a more sophisticated way by considering shared78

nearest neighbors. It further improves the calculation of densities by using the new similarity79

measure, and the allocation strategy by distinguishing inevitable and possible subordinate80

points. BPEC [28] replaces densities with beliefs and the allocation strategy with an op-81

timization problem called credal partition, and can provide fuzzy or even rough partitions.82

CFDPC [29] proposes an automatic method to filter out density peaks and thus several initial83

clusters, conducts adaptive searching of core points, and finally fuses initial clusters based84

on these core points in a hierarchical way. Considering manifold structures of some data,85

DPC-GD [21] and DLORE-DP [20] replace Euclidean distance with geodesic distance to im-86

prove the applicability to manifold structures. ADBC-KNN [25] and CDMC-IA [26] select87

multiple centers (generally more than the number of target clusters), by setting a threshold88

on the value of γ of DPC, and then combine the sub-clusters determined by these centers89

to obtain the final clustering result, by density reachability and by quantity affinity in a90
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hierarchical way, respectively. Instead of selecting centers, LDP-MST [30] generates several91

minimum spanning trees and constructs connection relations between these trees. The final92

clustering result is obtained by removing some of the edges between trees. FHC-LDP [24]93

builds sub-clusters with local density structures, and then combines these sub-clusters by94

hierarchical clustering. It is worth noting that, identifying sub-clusters is a way to discover95

local structural information, and combining them with hierarchical clustering or density96

reachability emphasizes again on local information. Instead, here we propose to use graph97

cut method for the purpose of aggregating sub-clusters, which arguably better balances local98

and global information.99

The spectral clustering algorithm [3] is a typical graph cut method, which is simple,100

effective and widely used. However, one of the most obvious disadvantages is its high time101

complexity O(m3), where m is the number of data points, and in recent years, improvements102

of the spectral clustering algorithm have mainly focused on computational efficiency. To103

achieve the purpose of acceleration, Cheng et al. [31] randomly select p representative points104

to approximate the original data set and make use of approximate matrix decomposition. Cai105

et al. [32] propose the landmark-based spectral clustering algorithm (LSC), which obtains106

p representative points as landmarks by random selection or K-means pre-clustering, and107

then uses sparse linear combinations of these landmarks to approximate adjacency matrix.108

Huang et al. [33] use approximated K-nearest neighbors to construct a sparse adjacency109

submatrix and interpret connections between data points as a bipartite graph, which is then110

divided into clusters by the Ncut algorithm. This enables the spectral clustering algorithm111

to efficiently perform clustering on data sets with millions of data points. Our idea of112

performing graph cut on family trees obtained from local structural information improves113

both the computational efficiency and effectiveness of graph cut, because points in the same114

family tree will be considered as a whole and will never be separated.115

There are also some researches on combining the ideas of the DPC algorithm with the116

spectral clustering algorithm. Li et al. [34] propose the DPSC algorithm, which replaces the117

K-means clustering with DPC in the second stage of spectral clustering, so that the decision118

graph of DPC could be used to determine the number of clustering and filter noises. Liu and119

Zhao [35] use changes of densities to improve the DPC, making it more effective for data120

with uneven density. They also apply the improved DPC algorithm to the second stage of121

spectral clustering.122

3. Preliminaries123

3.1. DPC124

The idea of DPC to cluster data is first to identify several density peaks as cluster centers125

and then to allocate the other data points to the clusters of the corresponding centers. For126

cluster centers, DPC makes the following assumptions:127

1. A cluster center has a higher density than the surrounding data points;128

2. The distance between cluster centers is far.129
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Based on these assumptions, DPC calculates ρi and δi to determine which data points can
be cluster centers, where ρi represents the density of a data point xi and δi represents the
distance between xi and its nearest neighbor with higher density, defined as:

ρi =
∑
i 6=j

χ (dij − dc) , where χ(x) =

{
1, x < 0
0, x ≥ 0

, and (1)

δi =

 min
j:ρj>ρi

dij if ∃j s.t. ρj > ρi,

max
j
dij otherwise.

(2)

Here, dij is the Euclidean distance between points xi and xj, and dc refers to the cutoff130

distance, which is a given hyper-parameter. The original paper of DPC [15] suggests that131

dc should be selected to cover 1-2% of the total number of points in data sets.132

Alternatively, ρi can also be defined using a Gaussian kernel as follows:

ρi =
∑
i 6=j

exp

[
−
(
dij
dc

)2
]
. (3)

After obtaining ρi and δi, there are two commonly used methods to identify C cluster133

centers, where C represents the number of target clusters. The first method is to draw a134

decision graph with δi and ρi as the x-axis and the y-axis, respectively, and then to manually135

select C cluster centers. The second method is to calculate γi = ρi × δi and select the C136

data points with the first C largest values of γi as the cluster centers.137

Once cluster centers are identified, DPC allocates each center to a cluster, and then each138

of the other data points is allocated to the cluster that its nearest neighbor with higher139

density belongs to.140

The assumptions and strategies of DPC have been shown to be effective in many cases.141

However, DPC fails to find correct cluster centers sometimes. For example, when data have142

various densities [19], data points with highest γi could lie in the same ground-truth cluster143

but their distance could be large enough, which makes DPC choose cluster centers in the144

same ground-truth cluster and then fail with any allocation strategy. Also, since DPC is145

based on Euclidean distance, it performs poorly on data sets with complex structures [19],146

e.g., as illustrated in experiments of this article, it is not suitable for data sets with manifold147

structure. Finally, the choice of its parameter dc, the cutoff distance, is also not an easy148

task.149

3.2. Spectral Clustering150

Spectral clustering is another widely used clustering algorithm. The idea of spectral151

clustering is: 1) to construct a connection graph with data points as nodes and their sim-152

ilarity measures as weights of edges; 2) to optimize the division of the connection graph153

into subgraphs s.t. the connection (similarity) between subgraphs is low and the connection154

of nodes within each subgraph is high; 3) to find an approximate solution to the former155
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optimization problem and obtain a new representation of data; 4) to perform clustering on156

the new representation.157

Given a data set X = {x1, x2, . . . , xm}, where m is the number of data points and the
dimension of each data point is n, an adjacency matrix W is used to represent the connection
graph, where Wij represents the similarity value between xi and xj. A commonly used loss
function in spectral clustering is the Ncut function [36]. Suppose C is the number of target
clusters. Let cut(A,A) = 1

2

∑
xi∈A,xj∈AWij (where A = X\A) and vol(A) =

∑
xi∈A,xj∈XWij,

for some A ⊆ X, then

Ncut (A1, . . . , AC) =
C∑
i=1

cut
(
Ai, Ai

)
vol (Ai)

. (4)

Finding optimal A1, . . . , AC for this objective function is an NP-hard problem and can be
approximated by a relaxed problem, as follows. Let hj = (h1j, h2j, · · · , hmj)T, where

hij =

{
0 xi /∈ Aj

1√
vol(Aj)

xi ∈ Aj . (5)

Denote by D the diagonal matrix s.t. Dii =
∑

jWij and by L the Laplacian matrix L =
D −W , then

hi
TLhi =

1

2

∑
u,v

Wij(hui − hvi)2

=
1

2

∑
xu∈Ai,xv∈Ai

Wuv
1

vol (Ai)
+

1

2

∑
xu∈Ai,xv∈Ai

Wuv
1

vol (Ai)

=
1

2
cut(Ai, Ai)

1

vol (Ai)
+

1

2
cut(Ai, Ai)

1

vol (Ai)

=
cut(Ai, Ai)

vol (Ai)
.

(6)

In this way, the problem of minimizing the Ncut loss function is converted to:

min
F

tr
(
F TD−1/2LD−1/2F

)
s.t. F TF = I, (7)

where F = D1/2H and the matrix H = (h1, . . . , hC).158

This optimization problem is a typical Rayleigh quotient problem [37] and the opti-159

mal F consists of the C eigenvectors corresponding to the first C smallest eigenvalues of160

D−1/2LD−1/2. The optimal solution H to the original problem can be obtained by cal-161

culating H = D−1/2F . The final clustering result is obtained by K-means clustering on162

H, taking each row of H as a feature vector. Another commonly used method comes163

from Ng et al. [3], where instead of calculating H, it just standardizes F by row obtaining164

Yij = Fij/(
∑

j′ F
2
ij′)

1/2. Again, to obtain the final clustering result, K-means clustering is165

conducted on Y , taking each row of Y as a feature vector. This article will also adopt the166

latter strategy.167
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Spectral clustering does not make any assumptions about the structure of the data and,168

as a result, has good performance on data of various structures. However, spectral clustering169

has several significant problems: 1) it needs to calculate eigenvectors of the matrix and the170

time complexity is O(m3) which is too high for large data sets; 2) a good similarity measure171

to form the adjacency matrix is crucial for its performance.172

3.3. Analysis173
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Figure 1: DPC clustering (left) and results with family trees (right).

DPC and many of its variants identify cluster centers based on the criteria that the174

centers should be points with globally higher density that are far apart from each other175

in terms of Euclidean distance. As densities could vary significantly across the whole data176

set and the data set might have a complex structure, this criteria is sometimes problematic.177

Consider Fig. 1 for example, where an arrow points from a data point to its nearest neighbor178

with higher density. On the left of the figure, point A is identified as the first cluster center179

by DPC; point B is a point with high density and is far enough from A, and thus DPC180

identifies it as the second cluster center, which is wrong. Moreover, as DPC uses Euclidean181

distance to measure the distance between a data point and its nearest neighbor with higher182

density, DPC allocates data points from the other cluster to the same cluster of B, e.g.,183

through arrows e1 and e2. Both of the above make DPC have a poor clustering performance184

on this data set.185

However, it is interesting to note that the strategy of DPC can have better clustering186

performance when restricted to local neighborhood. To illustrate this, we vary the number187

of target clusters from 2 to 29 for each of the four data sets, and measure the correctness188

of clusters by purity. The purity of a clustering result on a data set is defined as the189

1−
∑

i
|ci|
m
entropy (ci), where m is the number of data points, ci stands for the i-th cluster in190
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the result, and entropy(ci) represents the information entropy of the real label distribution191

corresponding to i-th cluster. This measures the proportion of data points that are correctly192

clustered together. Fig. 2 shows the results. With the increase of the number of target193

clusters, or in other words, the decrease of the range of local neighborhood, the purity of194

clustering results increases constantly. This means that DPC is likely to correctly cluster195

data points when restricted to a local neighborhood.
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Figure 2: Purity change of DPC with respect to the number of target clusters.

196

The above observation inspires us to consider applying the idea of DPC in local proximity197

of data points with some necessary modifications, to first partition a data set into smaller198

local clusters. Here, we consider finding the nearest neighbor with higher density for a data199

point only from its k nearest neighbors, and if none is found then we treat this data point200

as a local density peak. The figure on the right of Fig. 1 shows the result of this idea. In201

the figure, the data set is partitioned into smaller local clusters (called family trees), where202

points with locally highest density are marked by circles with red boundary. Note that the203

incorrect inter-cluster connections disappear in the result.204

The next important question is then how to combine these intermediate partitions into205

final target clusters. To this end, we exploit the idea of spectral clustering on family trees.206

In particular, we devise a novel similarity measure for these family trees to construct the207

adjacency matrix for spectral clustering. Unlike the original spectral clustering algorithm,208

this similarity measure also takes into account the contribution of the structure of family209

trees. In addition, we adapt the Ncut loss function for these family trees. As a result, we210

propose an algorithm combining the idea of local density peaks and spectral clustering (LDP-211

SC), and this algorithm retains several advantages of both DPC and spectral clustering.212

4. LDP-SC Algorithm213

The LDP-SC algorithm consists of two stages: constructing family trees so that all the214

data points are locally clustered, and clustering of family trees so that all the data points215

are globally clustered.216
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4.1. Construction of Family Trees217

As we have mentioned in the previous section, DPC performs well in identifying local218

clusters. The reason is that for local clusters, the sample space can be approximately219

regarded as an Euclidean space, which is exactly what DPC is good at. Therefore, instead220

of obtaining the final clustering result directly by finding cluster centers and allocating other221

points, we propose to first construct local clusters in the form of tree structures, known as222

family trees.223

The idea to construct family trees for a data set is to find the parent for each data point
in its local proximity in the sense of k nearest neighbors, and to identify the ones without
parent as the root nodes of trees. To be more specific, let KNN(xi) denote the set of k
nearest neighbors of a data point xi (excluding xi itself). The density of a data point xi,
denoted by ρ(xi), is given by

ρ(xi) =
k∑
j=1

exp(−dist2ij), (8)

where dist is an N × k matrix and distij is the Euclidean distance between xi and its j-th224

nearest neighbor. In this article, dist is also normalized by dist ← dist/max(dist) to reduce225

rounding errors. Compared with the definition of density in DPC (cf. Eq. 3), by exploiting226

k nearest neighbors, we avoid the cutoff distance dc that is hard to determine and sensitive227

to specific distributions of data.228

The parent P (xi) of a data point xi can then be defined and the family trees of a data229

set will be automatically constructed with this information for all xi.230

Definition 1. The parent P (xi) is determined by

P (xi) =

{
arg min

xj∈higher(xi)
distij if higher(xi) 6= ∅

None otherwise
, (9)

where higher(xi) = {xj|xj ∈ KNN(xi), ρ(xj) > ρ(xi)}.231

In other words, if there are points with higher density in the k nearest neighbors of xi, then232

the nearest point xj is selected as the parent of xi (if there are multiple such xj, we will233

select the first met one); otherwise, xi has no parent (P (xi) = None), and xi is defined as234

a root and added to the set root. For any root ri ∈ root, we will use T (ri) to refer to the235

family tree with ri as its root.236

Definition 2 (Family tree). A family tree is a tree with some data points xi as its nodes,237

and has a directed edge (xi, xj) if xj = P (xi).238

Fig. 3 is an illustration of the family trees constructed for the data set Aggregation (see239

Section 5 for details) with the number of nearest neighbors k = 20. The data points with240

red boundary are root nodes. This data set has 788 data points while there are only 17241

family trees. From the figure, it is also worth noting that the local clusters given by these242
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Figure 3: Illustration of family trees.

family trees have high purity, that is, the data points in the same tree are usually also in243

the same ground-truth cluster. A process to construct family trees for a data set is given in244

Algorithm 1.245

Finally, the following theorem characterizes the correctness of Algorithm 1 and the rep-246

resentation power of family trees.247

Theorem 1. Given k the number of nearest neighbors and X a finite data set to be consid-248

ered, the returned P by Algorithm 1 forms a set of family trees as defined in Definition 2,249

and each of the data points in X is in exactly one of the family trees.250

Proof. To show that P returned by Algorithm 1 forms a set of family trees, it is enough to251

show that it forms a set of trees and each tree is a rooted tree. In fact, there is no cycle252

path in the graph induced by the parent-child relation P , so it forms a set of trees. Assume253

on the contrary that there is a cycle path xi1 , . . . , xis , xi1 . Then by the construction of P ,254

ρ(xij) > ρ(xij+1
) for 1 ≤ j ≤ s, which implies ρ(xi1) < ρ(xis), and ρ(xis) < ρ(xi1), which is255

a contradiction. In addition, each data point xi has either 1 or 0 out-edge, and each tree256

has exactly one xi with 0 out-edge, because otherwise there will be a data point having at257

least 2 out-edges. This means each tree is a rooted tree.258

To see that each data point xi is in exactly one of the family trees, note that each family259

tree is a connected component if the edges are taken as undirected. If a data point is in two260

trees, then these two trees will be in a same connected component, which is not possible.261

In other words, any finite data set can be represented as a unique set of family trees and262

such a set forms a partition of the data set. In practice, as we will see from the experimental263

results, this kind of partitions conform well with the ground-truth clusters of a data set, and264

the number of trees is much smaller than the number of data points. To obtain the final265
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Algorithm 1: FamilyTree

Input: A data set X; the number of nearest neighbors k.
Output: Family trees represented by a parent-child relation P and a set of root

nodes root.

1 foreach xi ∈ X do
2 Calculate KNN(xi) and the distance matrix dist;
3 Calculate ρ(xi);

4 root← ∅;
5 foreach xi ∈ X do
6 Compute P (xi) according to Eq. 9;
7 if P (xi) = None then
8 root← root ∪ {xi};
9 return P , root.

clustering result, we then need to combine the trees into larger clusters in a way it considers266

both the root nodes and the structure of the trees, which will be discussed subsequently.267

4.2. Family Tree Aggregation268

In order to aggregate family trees into final clusters, it is necessary to consider not only269

the roots of trees but also the characteristics of the tree structure. To this end, the strategy270

of graph cut through spectral clustering is adopted, by considering each tree as a new data271

point, and devising a novel similarity measure between trees and a more appropriate loss272

function. The general steps of tree aggregation involve constructing an adjacency matrix,273

conducting graph cut to extract abstract features for each tree, and finally performing a K-274

means clustering on the new features to get the aggregation result of trees. In the following,275

we will explain each of the steps in details.276

4.2.1. Similarity Measure for Family Trees277

An adjacency matrix for family trees represents the similarity between each pair of them.278

A trivial solution is to calculate the distance between each pair of roots, which however,279

cannot correctly reflects the similarity between trees, as two roots might be close to each280

other but the trees as a whole are not. Therefore, we propose a more sophisticated similarity281

measure for trees.282

First, the average distance between trees is worth considering, which can reflect the283

relative distance between trees to some extent.284

Definition 3. The average l-distance between two trees T (ri) and T (rj) is

dl(T (ri), T (rj)) =

∑l
t=1 δt
l

, (10)

where (δ1, . . . , δs) is an ascendingly sorted list of all d(a, b) for a ∈ T (ri) and b ∈ T (rj),285

d(a, b) = ‖a− b‖2, l is a hyper-parameter, and if s < l then l is directly set as s.286
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The structural information of a tree itself can also be interesting, and here we consider287

a measure that reflects the looseness of the distribution of data points in a tree. The reason288

is that when considering the distance between two trees, we need to take into account the289

internal distance for data points in each of the trees. For example, a distance δ between290

two trees in a case where the internal distance for them is much smaller than δ would be291

more significant than a case where that is larger than or similar to δ. Consider Fig. 4 as292

an example. Although the gap between the tree A and the tree B is larger than the gap293

between A and C, intuitively A is more similar to B than to C.

Figure 4: Illustration of the effect of looseness of trees on their similarities.

294

Definition 4. The looseness of a tree T (ri) is measured by

ι(T (ri)) =
∑

xj∈T (ri)

g(xj, ri) · ω(xj, ri), (11)

where g(xj, r) = 0 if T (r) = {xj}, and g(xj, r) = min{d(xj, xj′)|xj′ 6= xj, xj′ ∈ T (r)}295

otherwise; ω(xj, r) = ρ(xj)/
∑

xj′∈T (r)
ρ(xj′).296

This measure of looseness can be considered as the sum of the distances between xj and297

its nearest neighbor in the tree for all xj, weighted by the relative density of xj in the tree.298

Then, a measure of separation between two trees can be proposed as follows.299

Definition 5. The separation between two trees T (ri) and T (rj) can be measured by300

σ(T (ri), T (rj)) = dl(T (ri), T (rj))/
√
ι(T (ri)) · ι(T (rj)) + ε, where ε is a small number to301

avoid division by zero.302
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It is easy to verify in Fig. 4 that this separation measure conforms to intuition. In fact,303

when calculating the separation degrees for trees A, B and C, we get dl(A,B) > dl(A,C)304

and ι(A) ≈ ι(B)� ι(C), which leads to σ(A,B) < σ(A,C).305

Finally, we would also consider the number of shared nearest neighbors of two trees as306

a contribution to the similarity measure of trees, which can be helpful for processing data307

with manifold structure.308

Definition 6. The shared nearest neighbors of trees T (ri) and T (rj) SNN(T (ri), T (rj)) =309

A(T (ri))∩A(T (rj)), where A(T (ri)) is the affiliate set of T (ri), which is
⋃
xj∈T(ri)

KNN(xj),310

i.e., the set of k nearest neighbors of data points in the tree.311

Note that this definition of shared nearest neighbors is generalized from [19]. Particularly,312

the above definition is about the shared nearest neighbors of trees, instead of points as in313

[19]. Fig. 5 shows the shared nearest neighbor connections with the number of nearest314

neighbors being 5 on the Jain data set, where a red line connects two roots ri and rj if315

|SNN(T (ri), T (rj))| > 0. It can be seen from this example that this measure respects the316

manifold structure of the data.

2 1 0 1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Figure 5: Illustration of shared nearest neighbor connections between trees.

317

As a result, the similarity between two trees can be obtained by synthesizing all of the318

above.319

Definition 7. The similarity between two trees T (ri) and T (rj) is given by

sim(T (ri), T (rj)) =
|SNN(T (ri), T (rj))|

(1 + σ(T (ri), T (rj))) · (1 + d(ri, rj))
, (12)

13



where d(ri, rj) = ‖ri − rj‖2.320

The above similarity measure for two trees is determined together by the number of321

shared nearest neighbors, the separation measure between them, and the distance between322

roots. Although this measure makes use of shared nearest neighbors, it is significantly323

different from the similarity measure defined in [19]. Specifically, in addition to the difference324

in the use of shared nearest neighbors, we also take the distance between roots and the325

separation between trees into consideration. Moreover, the above similarity measure will326

be used for graph cut, whereas that in [19] is used for the calculation of densities, as a327

subroutine for a procedure similar to DPC.328

For two trees T (ri) and T (rj), when their number of shared nearest neighbors is non-zero329

and fixed, if the densities of them have large difference (i.e., the separation degree is high),330

or if the distance between the roots is large, then the similarity will be low. Otherwise,331

the separation degree σ(T (ri), T (rj)) will be a balance against the distance between roots332

d(ri, rj): even when the distance is relatively large, if the separation degree is relatively low,333

then the similarity measure can still be relatively large. If both the separation degree and the334

distance between roots are close to zero (i.e., two trees are very similar), then the similarity335

value will be close to |SNN(T (ri), T (rj))|. Finally, when two trees have similar densities and336

similar distances between roots, then the similarity value will be mainly determined by the337

number of shared nearest neighbors. It can be easily seen that the value of this similarity338

measure is between 0 and m (m is the number of data points in a data set).339

The adjacency matrix W for the family trees of a data set is then calculated as Wij =340

sim(T (ri), T (rj)) and normalized by Wij = Wij/max(W ). Note that after normalization,341

Wij ≤ 1, and that the similarity between a tree and itself should be the highest. We thus342

set each Wii to be 1. It is worth noting that the connection graph induced by the adjacency343

matrix (i.e., an edge exists if the corresponding entry in the matrix is nonzero) might not344

be connected (see Fig. 5 for example), and the number of connected components could be345

larger than the number of target clusters, which is not desirable [11]. Therefore, we construct346

a Gaussian kernel distance matrix W ′ between roots, which is Wij
′ = exp(−d(ri,ri)

2

2
), and347

update W to be W + θW ′. Because W ′ is added only to maintain the connectivity of the348

whole graph, usually θ is set to a small value, e.g., 0.001.349

4.2.2. Graph Cut and Clustering of Trees350

The idea to perform graph cut on the connection graph of trees is similar to that of
spectral clustering. To simplify notations, in the connection graph, we use root r to represent
the tree T (r). Suppose T is the set of family trees (|T | = p) and the number of target clusters
is C. We adapt the original Ncut loss function (Eq. 4) for trees as follows.

Ntcut (A1, . . . , AC) =
C∑
i=1

cut
(
Ai, Ai

)
vol (Ai) ·

∑
r∈Ai
|T (r)|

, (13)

whereAi = {ri1 , . . . , ris} is a set of family trees (
⋃
iAi = T ), cut(Ai, Ai) = 1

2

∑
ru∈Ai,rv∈Ai

Wuv,351

and vol(Ai) =
∑

ru∈Ai,rj∈T Wuj. Note that an important difference between the above equa-352
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tion and the original Ncut loss function is that we also take the size of trees into consideration,353

in order to balance the sizes of the final clusters of data points.354

To find a solution that minimizes the above loss function, let hj = (h1j, h2j, · · · , hpj)T,
where

hij =

{
0 vi /∈ Aj

1√
vol(Aj)·

∑
r∈Aj

|T (r)|
vi ∈ Aj . (14)

Write U = DD∗, where D∗ and D are diagonal matrices, D∗ii = |T (ri)|, and Dii =
∑

j wij.
Similar to the derivation of Eq. 6, the final optimization problem becomes

min
H

tr
(
HTLH

)
s.t. HTUH = I, (15)

where H = (h1, . . . , hC) and L = D −W is the Laplacian matrix. Again, we can convert
the above problem to the following one, by setting F = U1/2H.

min
F

tr
(
F TU−1/2LU−1/2F

)
s.t. F TF = I. (16)

The above problem can be solved by computing the eigenvectors t1, . . . , tC corresponding355

to the first C smallest eigenvalues of U−1/2LU−1/2.356

Following a similar fashion of spectral clustering, let E = (t1, . . . , tC) ∈ Rp×C and Y =357

(Yij)p×C s.t. Yij = Eij/(
∑C

s=1E
2
is)

1/2. We can take each row of Y as a feature vector of each358

family tree, and the clustering result of the family trees can then be obtained by applying359

the K-means clustering algorithm on these feature vectors.360

The effectiveness of the revised objective function is visually illustrated in Fig. 6. In these361

figures, the clustering results of several trees are shown, where the left figure is generated362

using the original Ncut loss function and the right is from the revised loss function for trees.363

In the results, each circle represents a tree and the size of a circle is proportional to the364

size of the tree. It can be seen that with the original Ncut function, there are three trees365

incorrectly clustered (tagged as “error”), while with the revised function the three errors are366

corrected. By looking closer, the incorrectly clustered tree at the top has only a few nodes367

and has relatively low connection weights with other trees, so it is identified as an individual368

cluster; the other two incorrectly clustered trees at the bottom should be belong to the same369

cluster but are identified as parts of two separated clusters, because they have relatively370

high connection weights with other trees; the sizes of the trees are never considered as a371

decision factor in the original Ncut function.372

4.3. The LDP-SC Algorithm and Its Time Complexity373

The LDP-SC algorithm is shown in Algorithm 2. The main steps include: 1) constructing374

family trees by Algorithm 1; 2) calculating the adjacency matrix W for graph cut; 3) solving375

the graph cut problem to extract new features; 4) conducting K-means clustering on the376

new features to obtain the final clustering result.377

Suppose the number of data points in a data set is m, the dimension of each data point is378

n, the number of target clusters is C, the number of nearest neighbors is k, and the number379

of family trees is p.380
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Figure 6: Illustration of the effectiveness of the revised objective function (right), compared with the original
loss function (left).

In Algorithm 1, to get the distance matrix dist for the distances between points and their381

k nearest neighbors, one can make use of a KD-tree and the time complexity is O((n +382

k)m logm). The computation of densities is only related to the k nearest neighbors of each383

data point, so the time complexity is O(km). The family trees can then be constructed by384

calculating P (xi) for all xi in a total of time O(km), as to calculate P (xi) or to determine385

root, one needs to check every k nearest neighbor of xi. So Algorithm 1 requires O((n +386

k)m logm) time.387

For the rest of the algorithm LDP-SC, in lines 2-3, when calculating the similarity mea-388

sure, there are three parts in sequence.389

For the part of |SNN(T (ri), T (rj))| for all i, j, one needs first to get the k nearest neighbors390

of each data point, which takes O(km) time in total; then the intersections of affiliate sets391

of each pair of trees can be obtained in time O(
∑p

i=1 |T (ri)|(p − 1)) = O(pm). Therefore,392

for all |SNN(T (ri), T (rj))|, it costs O((k + p)m) time in total.393

For the part of σ(T (ri), T (rj)) for all i, j, one needs O(n · |T (ri)| · |T (rj)|) time to get each394

dl(T (ri), T (rj)), by first calculating d(a, b) for all a ∈ T (ri), b ∈ T (rj) and then scanning395

through the list of these values to get the smallest l values. So in total one needs O(
∑

i,j n ·396

|T (ri)| · |T (rj)|) = O(n ·
∑

i |T (ri)| ·m) = O(nm2) time to get all dl(T (ri), T (rj)). To get397

ι(T (ri)) for all i, it can be completed in O(km), as for each ι(T (ri)) one needs O(|T (ri)|)398

time to get all ω(xj, ri) and O(m2) time to get all g(xj, ri). So, all σ(T (ri), T (rj)) can be399

obtained in time O(nm2).400

The third part d(ri, rj) for all i, j can be obtained in a total time of O(np2).401

Therefore, lines 2-3 in the algorithm LDP-SC take O((k + p)m+ nm2 + np2) time.402

Lines 4-6 take O(p2) time.403

Lines 7-14 of Algorithm 2 take the same time as a spectral clustering algorithm which is404
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O(p3) [36].405

Lines 15-17 can be completed in time O(m) as one only needs to go through all the data406

points once.407

Algorithm 2: LDP-SC

Input: A data set X; the number of nearest neighbors k; the number of clusters C.
Output: Clustering results label.

1 P, root← FamilyTree(X, k);
2 foreach (ri, rj) ∈ root× root and ri 6= rj do
3 Wij ← sim(T (ri), T (rj)) by Eq. 12;
4 W ← W/max(W ) and set each Wii to 1;
5 Compute the Gaussian kernel distance matrix W ′;
6 W ← W + θW ′;
7 foreach ri ∈ root do Dii ←

∑
jWij ;

8 L← D −W ;
9 foreach ri ∈ root do D∗ii ← |T (ri)| ;

10 U ← DD∗;

11 E ← (t1, . . . , tC), the C eigenvectors of U−1/2LU−1/2 corresponding to its C smallest
eigenvalues;

12 foreach (ri, rj) ∈ root× root do

13 Yij ← Eij/(
∑C

s=1E
2
is)

1/2;
14 Apply K-means on Y to obtain cluster label ci for each T (ri);
15 foreach ri ∈ root do
16 foreach xi ∈ T (ri) do
17 label(xi)← ci;

18 return label.

In summary, the worst time complexity of the LDP-SC algorithm is O((n+ k)m logm+408

(k + p)m + nm2 + np2 + p3) and is bounded by O(km logm + nm2 + p3). Usually, the409

value of dimension n is considered to be bounded by a much smaller value than m and the410

time complexity can be simplified as O(m2 + p3). A comparison of the time complexities of411

different algorithms is shown in Table 1 (without considering dimension). In practice, the412

time needed for LDP-SC is usually much lower than the worst case and it is actually quite413

efficient. For example, LDP-SC takes about 3 seconds for data sets with about 9000 data414

points (the Pendigits and USPS data sets), 160 seconds for data sets with about 70 000 data415

points (MNIST and Fashion MNIST), and 3300 seconds for a data set with about 580 000416

data points (covertype). As an intuition on the efficiency of LDP-SC compared to others,417

DPC needs about 140 seconds for Pendigits and USPS, and cannot finish in 5 hours for418

MNIST, Fashion MNIST, and covertype.419

5. Empirical Evaluations420
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Table 1: Running time complexity comparison.
Algorithm Date, Publication Time Complexity
LDP-SC Ours O(m2 + p3)
SNN-DPC 2018, Information Sciences O(m2)
DPC 2014, Science O(m2)
LDP-MST 2021, IEEE Transactions on Knowledge and Data Engineering O(m logm)
FHC-LDP 2021, Neurocomputing O(m logm)
DPC-DBFN 2020, Pattern Recognition O(m2)
U-SPEC 2020, IEEE Transactions on Knowledge and Data Engineering O(mk(k + C) + p31)

**

LEC-K 2014, IEEE Transactions on Cybernetics O(p31 +mp21)
SC 2000, IEEE Transactions on Pattern Analysis and Machine Intelligence O(m3)
* m is the number of data points for all the algorithms; p is the number of family trees (p� m).
** p1 is the number of landmarks (k � p1 � m).

5.1. Experiment Settings421

To evaluate the performance of the LDC-SC algorithm, we will compare it with several422

baseline algorithms on both synthetic data sets and real-world data sets. Because the idea423

of the algorithm is based on local density peaks and graph cut through spectral clustering,424

the following prominent baseline algorithms are chosen:425

1. DPC [15]: the original DPC algorithm.426

2. SNN-DPC [19]: it improves density measurement, distance calculation, and allocation427

strategy of the DPC algorithm.428

3. LDP-MST [30]: it improves the DPC algorithm by generating some local tree structures429

(minimum spanning trees) and constructing connection relations between these trees.430

4. FHC-LDP [24]: it improves the DPC algorithm by building sub-clusters with local density431

structures, and then combining these sub-clusters by hierarchical clustering.432

5. DPC-DBFN [27]: it improves the DPC algorithm by exploiting a fuzzy kernel to extract433

a specific kind of structural information to improve the robustness of clustering.434

6. SC [36]: the original spectral clustering algorithm based on Ncut loss function.435

7. U-SPEC [33]: an accelerated spectral clustering algorithm using approximated K-nearest436

neighbors and bipartite graphs.437

8. LSC-K [32]: a variant of spectral clustering algorithms by using K-means to select land-438

marks.439

The implementation of SC are from the scikit-learn library, the implementations of SNN-440

DPC, LDP-MST, FHC-LDP, and DPC-DBFN are from the source code provided by the441

authors, the implementations of DPC and LSC-K are based on the descriptions of the442

original paper, and the U-SPEC implementation is from [38].443

Three commonly used clustering performance metrics, i.e., Adjusted Rand Index (ARI444

[39]), Normalized Mutual Information (NMI [40]) and Accuracy (ACC [41]) are selected for445

performance evaluation. All results are averaged over ten repeated runs of the algorithms.446

For fair comparison, the hyper-parameters of each algorithm are tuned beforehand.447

Specifically, all algorithms use the number of ground-truth clusters as the number of target448
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clusters. The number k of nearest neighbors for LDP-SC, SNN-DPC, SC, U-SPEC, FHC-449

LDP, DPC-DBFN, and LSC-K is searched from 2 to 50 with a step size of 1. DPC-DBFN450

has two ways to calculate densities and we try both and select the best one. For DPC, we451

search for an optimal value of the ratio of the number of neighbors against the number of all452

data points, in a loop with a step size of 0.1 from 0.2 to 5. For identifying cluster centers of453

SNN-DPC and DPC, this article selects the C data points with the first C largest values of454

γ (cf. Section 3.1), which is more general and fairer compared with manual selection with a455

decision graph. For LDP-MST, it recommends that data should have dimensionalities lower456

than 10, so we search for an optimal dimensionality from 2 to min(50, n) by using PCA.457

The adjacency matrix of SC is calculated based on k nearest neighbors. U-SPEC has a458

parameter p and we set the value p as 1 000 if the number of data points m > 10 000 and459

as b(m − 1)/10c otherwise. For LSC-K, the parameter p is set to 500 if m > 1000 and to460

bm/2c otherwise.461

For LDP-SC, the parameter l for average l-distance is set as 4, the weight θ of Gaussian462

kernel distance matrix is set as 0.001, and ε in Definition 5 is set as 10−6.463

For data sets, we utilize 8 widely used synthetic data sets, 8 real-world data sets, and 6464

image data sets. The details of them are shown in Table 2, Table 3, and Table 4. Fig. 7 gives465

an illustration of the image data sets. Data sets are all preprocessed in certain ways: for non-466

image data sets, the SNN-DPC and FHC-LDP algorithms apply min-max standardization467

to the data, and all the other algorithms applies z-score standardization; for image data468

sets, if the pixel value is in range [0, 255], then it is scaled to [0, 1].469

The experimental environment is: Python 3.9, Ubuntu 18.04, CPU i7-8700, and 64GB470

RAM.471

Table 2: Synthetic data sets.

Data set #Instances #Attributes #Clusters
Aggregation 788 2 7
R15 600 2 15
S2 5000 2 15
Flame 240 2 2
Jain 373 2 2
Spiral 312 2 3
happy 266 2 3
circle 299 2 3

5.2. Results and Analysis on Synthetic Data Sets472

Table 5 shows the results and the corresponding hyper-parameters, for LDP-SC and the473

other eight comparison algorithms on the synthetic data sets. The best results are marked474

in bold.475

From Table 5, we can see that LDP-SC has the best or close to the best performance on476

all of these data sets. On five out of the eight data sets, LDP-SC has 100 scores for all of477

ARI, NMI, and ACC metrics. The cases where LDP-SC is slightly weaker than the optimal478
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Table 3: Real-world data sets.
Data set #Instances #Attributes #Clusters
pengleukEW 72 7070 2
parkinsonsEW 195 22 2
seeds 210 7 3
spect 267 22 2
mfeat-fac 2000 216 10
landsatEW 6435 36 6
Pendigits 10992 16 10
convertype 581012 54 7

Table 4: Image data sets.

Data set #Instances #Attributes #Clusters
MNIST 70000 784 10
Fashion MNIST 70000 784 10
COIL20 1440 1024 20
USPS 9298 256 10
Yale 2414 1024 38
ORL 400 4096 40
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Figure 7: Examples of image data sets.
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Table 5: Results on synthetic data set (%).
Data set LDP-SC SNN-DPC DPC LDP-MST FHC-LDP DPC-DBFN U-SPEC LEC-K SC

Aggregation

ARI 99.56 95.94 99.56 99.56 100 99.27 90.57 99.20 98.98
NMI 99.24 95.55 99.24 99.24 100 98.83 92.55 98.84 98.51
ACC 99.75 97.84 99.75 99.75 100 99.62 85.41 99.62 99.49
Par. 7 15 3.5 2 6 30 3 8 14

R15

ARI 99.28 99.28 99.28 98.91 99.28 99.64 98.91 99.28 99.28
NMI 99.42 99.42 99.42 99.13 99.42 99.71 99.13 99.42 99.42
ACC 99.67 99.67 99.67 99.50 99.67 99.83 99.50 99.67 99.67
Par. 6 10 0.2 2 7 39 5 23 35

S2

ARI 92.94 91.91 92.49 91.88 92.86 93.61 93.57 93.52 93.41
NMI 93.76 93.14 93.52 93.54 93.71 94.29 94.25 94.19 94.27
ACC 96.58 96.08 96.36 96.04 96.54 96.92 96.90 96.88 96.82
Par. 34 35 0.5 2 36 4 22 10 47

Flame

ARI 100 95.02 100 93.39 100 96.66 98.33 95.01 91.76
NMI 100 89.94 100 87.52 100 92.69 96.35 89.91 85.19
ACC 100 98.75 100 98.33 100 99.17 99.58 98.75 97.92
Par. 23 5 2.7 2 7 6 4 5 5

Jain

ARI 100 59.35 71.46 100 100 80.08 100 100 100
NMI 100 55.91 65.22 100 100 71.88 100 100 100
ACC 100 88.74 92.49 100 100 95.17 100 100 100
Par. 14 39 0.3 2 7 43 2 9 8

Spiral

ARI 100 100 100 100 100 14.87 2.64 100 100
NMI 100 100 100 100 100 15.75 2.85 100 100
ACC 100 100 100 100 100 55.45 44.87 100 100
Par. 4 5 1.6 2 3 4 2 3 3

happy

ARI 100 100 71.79 100 100 52.21 100 100 100
NMI 100 100 78.71 100 100 60.94 100 100 100
ACC 100 100 89.85 100 100 81.58 100 100 100
Par. 4 5 4.6 2 8 2 2 3 7

circle

ARI 100 100 21.41 100 100 46.06 100 100 100
NMI 100 100 34.50 100 100 63.96 100 100 100
ACC 100 100 56.86 100 100 73.91 100 100 100
Par. 10 33 0.2 2 7 17 2 9 17

ones (FHC-LDP and DPC-DBFN) are the Aggregation, R15, and S2 data sets. It is worth479

noting that on the data set Jain, the SNN-DPC algorithm performs much worse than in480

the original paper, because in this article it identifies cluster centers automatically with γ481

values, whereas in the original paper it was done manually.482

We also visualize the results on synthetic data sets in Figs. 8 to 10. For the sake of space483

limitation, we omit the visualization of the results of DPC, SC, and LSC-K. In all of these484

figures, the cluster centers of SNN-DPC and DPC-DBFN are represented by pentagrams.485

Figs. 8, 9, and 10 show the clustering results on three data sets with high density clusters.486

SNN-DPC correctly finds the cluster centers and sometimes makes mistakes on borders due487

to its allocation strategy. Note that U-SPEC sometimes puts two subsets of data points488

that are far apart into one cluster. On the other hand, LDP-SC correctly separates the489

boundaries and adapts well for clusters of complex shapes.490

Figs. 11 to 15 show clustering results on five data sets with irregular shapes and manifold491

structure. It can be seen that LDP-SC performs well in all cases. For Fig. 11, all the other492

algorithms also perform well, except for some errors on the boundary. For Fig. 12, LDP-SC,493

LDP-MST, FHC-LDP, and U-SPEC all correctly detect the manifold structure; SNN-DPC494

and DPC-DBFN make mistakes on the boundary; the errors of SNN-DPC and DPC-DBFN495
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Figure 8: Aggregation

are due to large values for the number of nearest neighbors. For Fig. 13, LDP-SC, SNN-496

DPC, and LDP-MST perform well, while DPC-DBFN, FHC-LDP, and U-SPEC have poor497

performances on this data set. For Fig. 14, DPC-DBFN incorrectly includes data points498

from the curved strip for the clusters in the middle, and for Fig. 15, it identifies a wrong499

cluster center which makes it perform poorly.500

5.3. Results and Analysis on Real-World Data Sets501

Table 6 shows the results on eight commonly used real-world data sets, where the numbers502

of data points, clusters, and features vary in a large range, which allows us to evaluate our503

algorithm from different aspects. The proposed LDP-SC algorithm has the best performance504

in terms of all three metrics for five out of the eight data sets. Note that in four out of these505

five data sets, the performance of LDP-SC is significantly better than the second best. There506

are two data sets, i.e., spect and covertype, for which LDP-SC has the best scores for some507

of the three metrics. It is worth noting that for the covertype data set, the results of SNN-508

DPC, DPC, LDP-MST, FHC-LDP, DPC-DBFN, and SC cannot be obtained (shown as509

N/A in the table), because they exceed memory or time limit (5 hours). For the seeds data510

set, LDP-SC is slightly weaker than the best one. These results illustrate the superiority of511

LDP-SC on complex real-world data.512

5.4. Results and Analysis on Image Data Sets513

Table 7 shows the results on six commonly used image data sets. Note that for the514

MNIST and Fashion MNIST data sets, due to large number of data points (70, 000), SNN-515

DPC, FHC-LDP, DPC-DBFN, and DPC exceed memory or time limit and have no results.516
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Table 6: Results on real-world data sets (%).
Data set LDP-SC SNN-DPC DPC LDP-MST FHC-LDP DPC-DBFN U-SPEC LEC-K SC

pengleukEW

ARI 50.41 36.21 13.48 29.22 38.17 18.30 13.48 29.61 46.46
NMI 42.35 26.38 17.47 19.63 32.50 12.16 17.47 20.94 36.52
ACC 86.11 80.56 72.22 77.78 81.94 72.22 72.22 77.78 84.72
Par. 4 5 1 26 9 27 3 8 4

parkinsonsEW

ARI 46.23 45.21 40.28 41.71 39.10 9.77 -1.80 11.05 39.10
NMI 35.30 31.87 30.38 33.60 35.14 5.15 15.65 11.70 35.14
ACC 86.67 86.15 85.13 85.64 85.13 76.92 56.41 78.00 85.13
Par. 7 25 0.4 13 5 8 4 2 5

seeds

ARI 78.48 77.76 79.97 57.02 72.89 76.64 82.31 82.25 82.18
NMI 72.42 74.23 75.64 63.07 69.46 73.43 77.3 77.78 77.86
ACC 92.38 91.90 92.86 81.90 90.00 91.43 93.81 93.81 93.81
Par. 23 6 0.6 5 12 2 2 8 7

spect

ARI 30.62 35.98 -1.36 28.83 32.18 32.18 -1.99 -8.29 20.51
NMI 20.59 19.33 0.06 16.36 19.93 19.93 13.03 5.03 12.72
ACC 84.64 83.52 64.42 79.03 84.64 84.64 55.06 71.16 74.16
Par. 5 15 0.20 3 23 24 4 6 4

mfeat-fac

ARI 88.38 71.86 64.15 55.97 81.69 48.85 83.48 85.01 85.90
NMI 89.13 80.05 78.14 69.51 85.58 69.16 85.65 86.46 87.57
ACC 94.60 78.40 69.95 63.65 90.95 59.25 92 92.88 93.25
Par. 30 35 0.30 38 29 17 3 7 13

landsatEW

ARI 62.80 52.56 54.79 50.01 0.25 16.92 59.50 52.58 45.13
NMI 65.02 57.80 58.24 59.83 1.64 30.40 63.61 62.83 59.04
ACC 76.02 69.43 75.04 64.21 24.49 42.46 72.79 68.38 64.55
Par. 6 8 0.20 6 3 2 6 3 7

Pendigits

ARI 80.04 64.17 65.10 70.11 68.36 54.50 71.93 64.31 77.67
NMI 86.31 78.54 76.10 81.66 82.20 69.79 80.22 79.72 84.25
ACC 89.30 74.15 76.72 78.02 79.08 69.92 84.95 74.65 88.05
Par. 12 42 0.9 7 48 17 27 5 25

covertype

ARI 16.88 N/A N/A N/A N/A N/A 14.42 8.06 N/A
NMI 18.24 N/A N/A N/A N/A N/A 12.21 12.12 N/A
ACC 44.39 N/A N/A N/A N/A N/A 47.04 48.33 N/A
Par. 21 - - - - - 3 6 -
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Figure 15: circle

For the Yale, COIL20, USPS, and MNIST data sets, LDP-SC has the best performance for517

all three metrics. For ORL, LDP-SC has the highest ARI and NMI scores, and has a only518

slightly lower ACC score than the best one. For Fashion MNIST data set, although LDP-SC519

is not the best, its performance is very close to the best. Again, for the data sets where520

LDP-SC performs best, the scores of it are significantly higher than the others, especially521

for the USPS data set. These results also show that LDP-SC is very promising in high522

dimensional and complex real-world data.523

6. Discussion524

6.1. Robustness525

In the previous section, we discussed the optimal results of each algorithm with known526

data labels. However, unsupervised clustering can only be performed without labels in527

practice. Therefore, a good clustering algorithm should also be robust w.r.t. different values528

of parameters, so that its performance remains good enough without tuning parameters529

based on labels. Note that LDP-SC constructs a parent-child relationship by looking for530

the data point with higher density that is closest to a given data point. This relationship531

is expected to be insensitive to the only parameter k, i.e., the number of nearest neighbors:532

for a non-root point, when k changes within a reasonable range, its parent is likely to be533

the same one as before (because its parent is close to it and the relative ordering of their534

densities is likely to be unchanged); for a root point, k would need to become quite large to535

have a higher density point. To verify this empirically, Fig. 16 shows the fluctuation of ARI536
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Table 7: Results on image data sets (%).
Data sets LDP-SC SNN-DPC DPC LDP-MST FHC-LDP DPC-DBFN U-SPEC LEC-K SC

ORL

ARI 52.76 31.36 38.59 28.69 37.33 28.87 31.66 45.96 49.66
NMI 83.72 76.26 77.13 67.52 79.59 67.69 70.06 79.89 82.35
ACC 65.00 52.50 50.50 49.2 58.75 47.25 45.50 63.05 66.50
Par. 4 5 0.4 18 5 28 2 3 5

Yale

ARI 14.17 4.06 6.24 2.09 6.44 4.40 4.40 4.56 9.50
NMI 47.04 36.00 37.83 12.46 37.65 31.50 20.81 26.34 41.74
ACC 33.51 24.15 28.38 8.53 28.54 24.19 15.86 19.61 29.25
Par. 3 6 3 42 9 2 2 2 3

COIL20

ARI 84.33 61.68 60.86 69.54 79.17 54.51 76.74 82.56 71.11
NMI 96.30 82.07 84.19 89.42 92.76 75.59 89.69 95.38 86.24
ACC 87.29 69.44 69.65 77.29 83.47 61.75 80.94 85.00 79.38
Par. 3 41 2.6 13 9 26 2 3 13

USPS

ARI 91.91 61.82 35.65 80.29 68.91 51.16 80.72 75.20 68.02
NMI 90.03 76.94 52.29 81.95 77.44 64.70 82.45 83.05 82.21
ACC 95.81 66.41 46.86 86.47 73.13 63.49 84.76 78.92 68.36
Par. 4 16 4.2 28 15 4 5 2 4

MNIST

ARI 75.75 N/A N/A 62.66 N/A N/A 64.95 63.16 62.95
NMI 83.11 N/A N/A 69.58 N/A N/A 74.35 74.27 76.47
ACC 79.75 N/A N/A 68.57 N/A N/A 74.57 73.72 68.31
Par. 8 - - 21 - - 2 2 6

Fashion MNIST

ARI 46.92 N/A N/A 40.36 N/A N/A 47.01 40.16 46.8
NMI 62.96 N/A N/A 58.06 N/A N/A 62.54 56.22 65.89
ACC 58.69 N/A N/A 47.08 N/A N/A 58.85 58.13 58.33
Par. 9 - - 11 - - 3 35 4

values of LDP-SC, LSC-K, SNN-DPC, U-SPEC, FHC-LDP and DPC-DBFN w.r.t. k on the537

data sets spect, seeds, mfeat-fac and Pendigits. For DPC based algorithms, dc = k/10. Note538

that U-SPEC performs clustering on the specified core points, which might be smaller than539

the given k and thus makes the algorithm have no result in that case (spect and seeds data540

sets). From the results, it can be seen that LDP-SC algorithm is very stable w.r.t. changes541

of k and can be considered as one of the most stable ones among the six algorithms.542

6.2. Ablation Study543

In order to verify the significance of each component in the proposed algorithm, an544

ablation study was conducted here on seven real-world data sets. The results are optimal545

by searching for the best parameters, and are shown in Table 8, where columns a, b, c, d546

represents the following different settings, respectively:547

a. Graph cut is changed to be on the roots only, using the original spectral clustering548

algorithm. This is to verify the significance of the tree structures and the corresponding549

similarity measure (Eq. 12) considered in this article.550

b. The term of separation degree (1 + σ(T (ri), T (rj))) in similarity measure (Eq. 12) is551

removed. This is to verify that separation degree is useful for complex structures of552

real-world data.553

c. The term |SNN(T (ri), T (rj))| in the similarity measure is replaced with the constant 1.554

This is to verify that the neighboring information of trees is useful for clustering.555

d. The total number of nodes in trees is removed from the loss function Ntcut (Eq. 13).556

This is to verify the significance of tree sizes for clustering.557
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Figure 16: Performance changes with respect to the number of nearest neighbors k.

According to Table 8, as there will be a decrease in performance when a component is558

removed or changed in most data sets, it can be seen that each component of the proposed559

algorithm is useful.560

7. Conclusion561

This article proposes a new clustering algorithm based on the idea of local density peaks562

and graph cut. In particular, this algorithm takes the advantages of the DPC algorithm in563

local neighborhoods to capture latent structures of data to construct family trees, devises564

a novel similarity measure between family trees, and adapts the Ncut objective function to565

perform graph cut on the connection graph of these trees. In this way, a data set can be566

clustered by allocating data points in a family tree to the cluster of the tree. We performed567

a variety of empirical evaluations of the proposed algorithm on 22 challenging synthetic data568

sets and real-world data sets. The results demonstrated the superiority of our algorithm over569

29



Table 8: Results of ablation study (in ARI, %).

Data set LDP-SC a b c d
pengleukEW 50.41 0 50.41 13.76 50.41
spect 30.62 16.19 23.07 30.62 30.62
landsatEW 62.80 36.43 60.04 51.48 58.34
mfeat-fac 88.38 73.87 88.38 84.78 80.88
parkinsonsEW 46.23 39.10 39.10 39.10 46.23
Pendigits 80.04 56.23 79.16 72.68 79.50
seeds 78.48 78.48 78.48 78.48 78.48

several prominent clustering algorithms, in terms of three commonly used metrics (ARI,570

NMI, and ACC). The analysis of its robustness w.r.t. hyper-parameters shows that the571

proposed algorithm has stable performance with a large range of the hyper-parameter k,572

the number of nearest neighbors. This new algorithm is also very efficient compared to573

several algorithms including SNN-DPC, LDP-MST, DPC-DBFN, FHC-LDP, DPC, and SC574

on large data sets, and is competitive compared to accelerated spectral cluster algorithms.575

Ablation study also proves that each of its components has a contribution to the overall576

performance of the algorithm. Nevertheless, the current algorithm still has some defects,577

e.g., the efficiency of the algorithm can be further improved, the number of target clusters578

can only be determined manually, and the ability to detect and remove noise data is still579

missing. All of these will be interesting to explore in the future.580
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