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Abstract—Qualitative spatio-temporal representation and rea-
soning is an important research direction in the field of artificial
intelligence, and qualitative constraint networks are a key tool
for representing and reasoning with spatio-temporal knowledge.
Previous studies have pointed out that qualitative constraint
networks often contain redundant constraints. This not only
results in a waste of storage and transmission resources, but
can also be a bottleneck in various algorithms and applications
that are based on qualitative constraint networks. Existing
research proposed several algorithms to deal with redundant
constraints, but their time complexities are relatively high, which
is very unfavorable when dealing with large-scale data that are
common nowadays. This paper proposes a new model based
on distributed computation to deal with redundant constraints
efficiently. Specifically, this paper theoretically proves the fea-
sibility of the distributed model for this problem, proposes
different optimization algorithms for distributed task allocation,
and evaluates the performance of the distributed model through
a variety of experiments on real-world data sets. The results
show that the distributed model can significantly improve the
processing efficiency of simplifying representations of qualitative
spatio-temporal information on large-scale data sets, and that the
distributed solution to the problem of simplifying representations
can also improve data privacy, which can contribute to big data
processing and data security protection in qualitative spatio-
temporal reasoning research.

Index Terms—qualitative spatio-temporal representation and
reasoning, qualitative constraint network, representation simpli-
fication, redundancy, distributed algorithm

I. INTRODUCTION

Spatio-temporal information is very important in both daily
life and scientific research. For example, people often need
to schedule different tasks (such as appointments), and it is
necessary to model the spatial relations between surrounding
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Fig. 1. Illustration of QCN and redundant relations.

objects in robot control and navigation [1], like “the cup is
above the table” and “the hand of the robot is next to the
cup”. This type of information can be processed by qualitative
spatio-temporal representation and reasoning (QSTR). QSTR
is an important sub-field of artificial intelligence, and plays an
invaluable role in related fields, such as image processing [2],
computer vision understanding [3], and deep learning [4].
In QSTR, qualitative spatio-temporal information is usually
represented by a graph structure, called qualitative constraint
network (QCN), in which the vertices of the graph correspond
to spatial or temporal objects, the edges to the connections
between these objects, and the label of an edge to a qualitative
relation between the corresponding two objects. As shown in
Fig. 1, the QCN on the right represents the relation (constraint)
between the spatial objects on the left. For example, the
relation between 1 and 2 is PO (partially overlap).

Note that a QCN for n objects needs O(n2) edges to repre-
sent the relations. For large n, this representation will not be
favorable to storage and transmission, as well as to algorithms
that use QCNs for qualitative information processing. For
example, Wallgrün [5] proposes to adjust spatial regions to
meet some given topological constraints. The efficiency of the
adjustment algorithm is in negative proportion to the number
of topological constraints, which means that fewer constraints
will lead to higher efficiency of the algorithm. The number



of constraints will also affect reasoning efficiency. When
checking if some spatial objects satisfy certain qualitative
constraints, fewer constraints means fewer checks in general.
Smaller number of constraints is also helpful in comparing two
QCNs. For example, in the merging problem of QCNs [6], it is
often necessary to calculate the distance between two QCNs,
fewer constraints means faster calculation of the distance.
From the above, it can be seen that simplifying the repre-
sentation of a QCN has important practical advantages, and
identifying and removing redundant constraints is important.
Redundant constraints refer to constraints in a QCN whose
removal does not change the represented information. Such
constraints are very common in QCNs. For example, in Fig. 1,
the constraint between v4 and v2 can be entailed by the
constraints between v4 and v3, and between v3 and v2 (4 is
strictly contained in 3, 3 is strictly contained in 2, and thus
4 is strictly contained in 2), i.e., this constraint is redundant.
Similarly, the constraint between 1 and 4 is also redundant.

In this paper, we propose to combine distributed algorithms
to solve the redundancy problem, which can also ensure
efficiency and privacy. The main contributions of this paper
are as follows:
• we theoretically prove the feasibility of establishing a

distributed model for removing redundant constraints
of large-scale QCNs, by showing that the model can
correctly identify redundant constraints, and can remove
these redundant constraints in a distributed manner;

• we construct a distributed model for removing redundant
constraints of large-scale QCNs, devise the corresponding
distributed algorithm, propose several task allocation op-
timization algorithms, and theoretically demonstrate their
effectiveness;

• we use three baseline algorithms to conduct comparative
experiments on 17 real-world data sets, where the results
show the superiority of the proposed distributed model
and optimization algorithms, and the significance of per-
formance improvement.

The remainder of this paper is structured as follows: Sec-
tion II discusses related work, Section III introduces prelimi-
nary knowledge and notions, Section IV proposes and analyses
the distributed model, algorithm, and optimizations, Section V
performs experimental evaluations, and Section VI concludes
the paper.

II. RELATED WORK

QSTR has been extensively studied in the past decades. Re-
searchers considered models and representations of qualitative
spatio-temporal information [7]–[10], efficient reasoning with
such information [11]–[14], and its applications in different
areas [1], [2], [15], [16]. The redundancy of knowledge
has already attracted the attention of researchers in various
fields [17]–[20]. In QSTR, Egenhofer and Sharma were the
first to consider the redundancy problem [21], by observing
that some constraints in a given QCN were not necessary
for answering queries. This problem was again mentioned
by Rodrı́guez et al. [22]. Wallgrün [5] found that redundant

constraints have a great impact on the performance of topo-
logical adjustment algorithms, and for the first time, gave two
algorithms for removing redundancy in QCNs, which however
have no guarantee to remove all redundant constraints. Re-
cently, Li et al. [23] comprehensively studied the redundancy
problem of QCNs from the perspective of relation algebras,
and based on special relational subclasses (i.e. distributive
subalgebras [24]) proposed a complete algorithm that can
remove all redundant constraints. Following that work, Sioutis
et al. [25] proposed a redundancy removal algorithm for
sparse QCNs. However, the worst time complexity of these
two algorithms is O(n3) (n is the number of variables in
the constraint network). For the case when there are a large
number of variables and constraints, they will naturally be
inefficient. Moreover, these two algorithms are based on a
centralized processing model, resulting in a waste of com-
putation power and a loss of data privacy. On the other
hand, the distributed model proposed in this paper can make
use of current popular distributed computation frameworks to
perform efficient calculations, so that the idea of removing
redundancy can be applied efficiently to large-scale data, and
to enhance the ease of use of these data and also protect data
privacy and security.

There are some precedents for distributed algorithms in
the field of qualitative spatio-temporal representation and
reasoning [26]–[29]. These distributed algorithms are only for
consistency checking problems. For the redundancy problem,
although there is various research, distributed related algo-
rithms are rarely studied. Therefore, this paper also plays
an important role in promoting the application of distributed
algorithms to the redundancy problem.

III. PRELIMINARIES

Qualitative relations are the most fundamental concept in
QSTR. Given a domain D, a (binary) relation R on D is a set
of pairs (a, b) ∈ D × D, i.e., R ⊆ D × D. In particular,
some set of relations can form a partition B of D × D,
where for any pair (a, b) ∈ D ×D, there is a unique relation
r ∈ B such that (a, b) ∈ r. This partition B, together with
set intersection, union, and complement, gives a particular
Boolean algebra, which is known as a qualitative calculus.
Different partitions B give different qualitative calculi, and
a relation r in B is called a basic (qualitative) relation. The
Region Connection Calculus (RCC) [30] is a classic model that
characterizes topological relations between spatial regions and
has applications in various fields [4], [31]. As shown in Fig. 2,
RCC has a specific model called RCC8, which contains eight
basic relations.

A relation obtained by the intersection, union, and comple-
ment of the basic relations is still a qualitative relation in the
qualitative calculus, such as DC ∪PO. For convenience, we
usually use a set {r1, . . . , rk} to represent a qualitative relation
r1∪· · ·∪rk, such as {DC,PO}. When r1∪· · ·∪rk = D×D,
this qualitative relation is called the universe relation, denoted
as U; when k = 1, for representation consistency, we
sometimes also use {r1} to represent the basic relation r1.



Fig. 2. Illustration of RCC8 relations.

The inverse relation of a relation R is written as R−1, such as
the inverse relation of TPP is TPP−1. The identity relation
is denoted by EQ.

Qualitative relations in a qualitative calculus can be com-
posed in a usual way as general relations: R◦S = {(x, y)|∃z ∈
D, (x, z) ∈ R ∧ (z, y) ∈ S}, However, the result of the
composition is not necessarily a qualitative relation in the
qualitative calculus. Therefore, researchers proposed the con-
cept of weak composition, which is defined as r1 � r2 =
{r ∈ B | r ∩ (r1 ◦ r2) 6= ∅}, i.e., the smallest qualitative
relation that contains the usual composition. The weak com-
position between two general qualitative relations is defined
as

⋃
{r1 � r2 | r1 ∈ R1, r2 ∈ R2}.

Definition 1. Given a qualitative calculusM, if a set of quali-
tative relations S ⊆M satisfies the following simultaneously:
• B ⊆ S;
• S is closed under the intersection of relations, weak

composition, and inverse operations;
• For any three relations R,S, T ∈ S , if S ∩ T 6= ∅, then
R � (S ∩ T ) = (R � S) ∩ (R � T ) and (S ∩ T ) � R =
(S �R) ∩ (T �R);

then S is a distributive subalgebra of M.

Qualitative spatio-temporal information is usually repre-
sented by qualitative constraint networks.

Definition 2. A qualitative constraint network (QCN) N is
an pair (V,C), where V is a set of variables, C is a set of
constraints of the form (viRijvj) , Rij is a qualitative relation
in the qualitative calculus model M, and for all vi, vj ∈ V
we have Rij = R−1ji , and Rii = EQ.

For convenience, we sometimes use C(vi, vj) or N [vi, vj ]
to represent the relation Rij between vi and vj . If there is an
explicit constraint between each pair of variables in a QCN,
then we call it a complete network, otherwise it is called an
incomplete network. If the relations in a complete network are
all basic relations, then it is called a basic network. As shown
in Fig. 1, the relations in this QCN are all basic relations (some
inverse relations are omitted in the figure), and it is a basic
network; but if the relations corresponding to the dashed edges
were removed, the resulting network would be an incomplete
network.

Definition 3. A QCN N = (V,C) naturally induces an

undirected graph G(N) = (V,EC), that is, the vertex set of
G(N) is V , and an edge (vi, vj) ∈ EC if Rij 6= U and
vi 6= vj . This undirected graph is called the constraint graph
of N .

Given a QCN N , N[vi,vj ]/R means replacing the relation
between vi and vj by R, i.e., N[vi,vj ]/R = (V,C ′), where
C ′(v, v′) = R,C ′(v′, v) = R−1, and for any (x, y) ∈ V ×
V − {(v, v′), (v′, v)}, C ′(x, y) = C(x, y).

Definition 4. A solution a of QCN N = (V,C) is an
assignment that maps all the variables in V into the domain
D, such that ∀vi, vj ∈ V , (a(vi), a(vj)) ∈ N [vi, vj ]. If N has
such a solution, then we say N is consistent or satisfiable. If
two QCNs N1 and N2 have the same solution set, then these
two QCN are equivalent, denoted by N1 ≡ N2. If there are
no two different variables vi and vj of N such that for any
solution of N , (a(vi), a(vj)) ∈ EQ, then N is said to satisfy
the uniqueness property (because every variable corresponds
to a unique entity); clearly, every QCN can be made to satisfy
this property by collapsing identical entities together.

To determine the consistency of a QCN, researchers have
proposed many algorithms, among which partial path consis-
tency is a commonly used criterion.

Definition 5. Given a QCN N = (V,C), suppose G(N) =
(V,EC) is its constraint graph, G = (V,E) is another graph
satisfying EC ⊆ E. If ∀(vi, vj), (vi, vk), (vk, vj) ∈ E,
N [vi, vj ] ⊆ N [vi, vk] � N [vk, vj ] and N [vi, vj ] 6= ∅, then N
is partial path consistent (PPC) w.r.t. G.

A consistent QCN N can always be converted into an
equivalent partial path consistent QCN �G(N) by using the
partial path consistency algorithm (PPC) [32], known as the
partial path consistency closure of N . Researchers found that
when a QCN has a special graph structure, reasoning on it can
be more efficient. One of the important graph structures is the
triangulation graph or the chordal graph.

Definition 6. An undirected simple graph is called a triangula-
tion graph or chordal graph, if for any of its cycles containing
4 or more edges (i.e., loops without repeated vertices), there
is an edge connecting two non-adjacent vertices on this cycle.

If G is a chordal graph, for QCNs over a distributive
subalgebra of RCC8, the consistency of N can be determined
by PPC [33].

IV. REDUNDANCY REMOVAL MODEL AND ALGORITHMS

A. The Redundancy Problem
As mentioned earlier, there are often redundant constraints

in QCNs, and the goal of this paper is to propose an efficient
distributed algorithm to identity and remove such constraints.

Definition 7. Given a QCN N = (V,C), a constraint
(viRijvj) is redundant iff N[vi,vj ]/B ≡ N .

In other words, a constraint (viRijvj) is redundant, if its
removal (together with its inverse) does not change the infor-
mation expressed by the resulting QCN. A natural question is



how to check if a constraint (viRijvj) is redundant. According
to the definition of redundancy, this is equivalent to checking
that N[vi,vj ]/B and N are equivalent, that is, for any basic
relation r in B−Rij , verifying that N[vi,vj ]/r is unsatisfiable.
This leads to the most basic algorithm with time complexity
O(n5), which is too expensive.

Li et al. [23] proposed a more efficient algorithm, with time
complexity O(n3), for identifying and removing redundant
constraints of a complete network over a distribution subal-
gebra. However, the requirement of complete network usually
cannot be satisfied in practical applications, and thus Sioutis et
al [25] later gave a more efficient algorithm for incomplete
networks over some distributive subalgebra. Theorem 1 guar-
antees the correctness of their algorithm.

Theorem 1. ( [25]) Let S be some distributive subalge-
bra of RCC8, N = (V,C) a QCN on S satisfying the
uniqueness property, G = (V,E) a chordal graph satisfy-
ing E(G(N)) ⊆ E, and N∗ the partial path consistency
closure of N w.r.t. G. Then N [vi, vj ] is redundant in N iff
N∗[vi, vj ] =

⋂
{N∗[vi, vk] �N∗[vk, vj ] | (vi, vk), (vk, vj) ∈

E} or N [vi, vj ] = U.

The corresponding algorithm is shown in Algorithm 1
(Prime), in which the redundancy checking sub-procedure is
given in Algorithm 2 (CheckRedun). When G is a complete
graph, the algorithm degenerates to the algorithm on a com-
plete network.

Algorithm 1: Prime

Input: A QCN N = (V,C) over a distributive
subalgebra of RCC8; a chordal graph
G = (V,E) satisfying E(G(N)) ⊆ E.

Output: Nc without redundant constraints.

1 Nc ← N ;
2 N ← �G(N);
3 for (vi, vj) ∈ E do
4 Nc ← CheckRedun(N,Nc, (vi, vj));
5 end
6 return Nc;

B. Distributed Redundancy Removal Model and Feasibility
Analysis

In order to improve redundancy identification and removal
in large-scale data, this paper proposes a distributed model,
which is illustrated in Fig. 3.

First, an input QCN will be preprocessed by Preprocess(),
including the calculation of its partial path consistency closure;
then the redundancy checking of a constraint N [vi, vj ] in the
QCN is made as a single distributed task, and N [vi, vj ] is
passed to different computation nodes by a certain allocation
algorithm AllocateTask(); CheckRedun() (Algorithm 2) is then
used for redundancy checking and removal on each node;
finally, the CollectResult() algorithm is used to collect the

Algorithm 2: CheckRedun

Input: QCNs N and Nc, and an edge (vi, vj) ∈ E to
check consistency.

Output: The updated Nc.

1 if Nc[vi, vj ] = U then
2 Nc ← Nc −N [vi, vj ];
3 return Nc;
4 end
5 Qij ← U;
6 for vk s.t. (vi, vk), (vk, vj) ∈ E do
7 Qij ← Qij ∩N [vi, vk] �N [vk, vj ];
8 if Qij = N [vi, vj ] then
9 Nc ← Nc −N [vi, vj ];

10 return Nc;
11 end
12 end
13 return Nc;

Fig. 3. Illustration of the distributed model.

results on all computation nodes. The general flow of the
model is shown in Algorithm 3.

The theorem below shows that for a QCN N satisfying the
uniqueness condition over a distributive subalgebra of RCC8,
Nc returned by Algorithm 3 has no redundant constraint, and is
equivalent to N , that is, the large-scale distributed computation
model proposed in the paper is sound and complete.

Theorem 2. Let S be a distributive subalgebra of RCC8, N a
QCN over S satisfying the uniqueness property, G = (V,E) a
chordal graph satisfying E(G(N)) ⊆ E, and N∗ the partial
path consistency closure of N w.r.t. G. If Nc is the returned
result of Algorithm 3 with N and G as input, then Nc has no
redundant constraint and Nc ≡ N .

Proof. According to the second line of Algorithm 3, the
QCN used to determine the redundant constraint in line 7
is the partial path consistency closure of N w.r.t. G, and
by Theorem 1, the redundancy of any constraint N [vi, vj ]
allocated to a certain computation node can be determined
by Algorithm 2. Therefore, all the redundant constraints in N



Algorithm 3: Distributed Prime

Input: A QCN N = (V,C) over a distributive
subalgebra of RCC8; a chordal graph
G = (V,E) satisfying E(G(N)) ⊆ E; the
number of computation cores K.

Output: Nc without redundant constraints.

1 Nc ← N ;
2 N ← �G(N);
3 {C1, · · · , CK} ← AllocateTask(Nc, G,K);
4 foreach node r parallelly do
5 N

(r)
c ← Cr;

6 for each (vi, vj) ∈ N (r)
c do

7 N
(r)
c ← CheckRedun(N,N (r)

c , (vi, vj));
8 end
9 end

10 Nc ← CollectResult(N (1)
c , · · · , N (K)

c );
11 return Nc;

can be identified and removed, that is, Nc has no redundant
constraints.

Secondly, the order to remove redundant constraints does
not affect the redundancy of the constraints, that is, the opera-
tions to identify and remove redundant constraints can be par-
allelized. Suppose N [x1, y1] and N [x2, y2] are redundant con-
straints in N . Let N (1) = N[x1,y1]/B and N (2) = N[x2,y2]/B ,
i.e., N (1) is the resulting QCN when removing N [x1, y1] from
N and N (2) is the resulting QCN when removing N [x2, y2]
from N . By the redundancy of N [x1, y1] and N [x2, y2], the
partial path consistency closures of N (1) and N (2) w.r.t. G are
both N∗. As the redundancy checking only uses N∗ according
to Algorithm 2, N [x1, y1] is also redundant in N (2) (similar
for N [x2, y2]). Therefore, N (2)

[x1,y1]/B
≡ N ≡ N (1)

[x2,y2]/B
. Then

Nc obtained by removing all redundant constraints in a certain
order is also equivalent to N .

In Algorithm 3, CollectResult() collects the non-redundant
constraints obtained by each computing core and merges
them into a QCN containing only non-redundant constraints.
The specific implementation is to directly combine all non-
redundant constraint sets N (1)

c , . . . , N
(K)
c . The specific imple-

mentation of AllocateTask() will be discussed in detail in the
next subsection.

C. Allocation Algorithm Optimization

Different task allocation algorithms will affect the efficiency
of the distributed algorithm. The main reason is that in
the process of distributed computation, if tasks are unevenly
allocated, it will cause some nodes to complete tasks much
later than others, and the total calculation time will be deter-
mined by longest computation time of nodes, resulting in the
so-called “long tail” phenomenon. This paper proposes the
following three task allocation algorithms: first, the natural

Algorithm 4: AllocateTask-Group
Input: a QCN N = (V,C); a graph G = (V,E); the

number of computation nodes K.
Output: Allocation result {C1, · · · , CK}.

1 for vi in V do
2 Pi ← {N [vi, vj ] | j > i, (vi, vj) ∈ E};
3 end
4 {P1, . . . , P|V |} ← Shuffle({P1, . . . , P|V |});
5 m← b|V |/Kc;
6 for r from 1 to K do
7 Cr ← P1+m(r−1) ∪ . . . ∪ Pm+m(r−1);
8 end
9 CK ← CK ∪ PKm+1 ∪ . . . ∪ P|V |;

10 return {C1, · · · , CK};

allocation algorithm (natural)where the tasks are evenly allo-
cated to different computation nodes for calculation following
the current order of tasks; second, the random allocation
algorithm (random), which reorders tasks randomly and then
allocates them as the natural allocation algorithm; third, the
group allocation algorithm (group), as shown in Algorithm 4.
Notably, the former two algorithms are two common allocation
algorithms in distributed computation.

The algorithm first divides all tasks {N [vi, vj ] | j > i}
for some vi into one group, and then randomly distributes
different groups to different computation nodes for calculation.
This allocation algorithm is based on the analysis of time
consumptions of the redundancy problem task.

In fact, for the group algorithm, it can be proved that it
is highly probable that the runtimes of different computation
nodes are close to each other. For the variable vi, let the total
calculation time be ti, and suppose these ti follow a certain
distribution T where the mathematical expectation E(T ) = µ
and variance D(T ) = σ2. Now allocate the groups for vi ∈
V to K computation nodes C1, · · · , CK randomly, and the
number of groups for each node is m. Suppose the total time
of Cr is Ur = ti1 + · · ·+ tim , then E(U1) = · · · = E(UK) =
E(U) = mµ. We call |Ur − Us|/E(U) the deviation rate,
which measures the difference between the total runtimes of
two computation nodes.

Theorem 3. When m is large enough, we have that P (|Ur −
Us|/E(U) ≤ Zα/2

√
2σ/(
√
mµ)) = 1−α, i.e., the probability

that the deviation rate does not exceed Zα/2
√
Kσ/(

√
nµ) is

1 − α, where Zα/2 is the Z value of the standard normal
distribution for confidence level α.

Proof. As Ur = ti1 + · · ·+ tim , when m is large enough, by
the central limit theorem, Ur approximately follows a normal
distribution with expectation of mµ and variance of mσ2,
and is independent from each other for different r. Therefore,
(Ur−Us)/(

√
2mσ) follows a normal distribution with expec-

tation of 0 and variance of 1. From the nature of the normal
distribution, we can see that P (|Ur−Us|/(

√
2mσ) ≤ Zα/2) =

1−α and it can be converted to P (|Ur−Us| ≤ Zα/2
√
2mσ) =



1−α, then P (|Ur −Us|/E(U) ≤ Zα
√
2mσ/E(U)) = 1−α

and thus, P (|Ur − Us|/E(U) ≤ Zα/2
√
2σ/(
√
mµ)) = 1 −

α

For large data sets, m is generally large, and the deviation
rate between different computation nodes can be approximated
by the above theorem at the confidence level of α. For
example, for the adm2 data set in this paper (see Table I),
suppose the calculation is done by K = 6 nodes, then
m ≈ 0.29× 106. The sample variance σ ≈ 0.917× 10−2, and
sample expectation µ ≈ 0.121×10−3. If α = 0.05, then there
is a probability of 0.95 that the deviation rate does not exceed
Zα/2

√
2σ/(
√
mµ) ≈ 0.39. The actual situation is close to this

estimate where in 28,000 groups there are only 1376 (4.91%)
ones with the deviation rate exceeding 0.39. In general, the
group algorithm will give a balanced allocation with a large
probability, which can effectively reduce the occurrence of the
“long tail” phenomenon.

Moreover, the group algorithm has a certain advantage in
data reading efficiency over the random algorithm, because
sequential access of the data in the memory is faster than
random access. In fact, the group algorithm allocates all
constraints of the same variable to the same computation node,
so these constraints generally have similar memory addresses,
and thus data access in this case is approximately sequential.
In this way, the computation efficiency is further improved. In
the next section, the above intuitive analysis will be verified
through experiments.

V. EVALUATIONS

A. Experiments Settings and Evaluation Criteria

This paper uses the public available real-world data sets
used in previous studies on the redundancy problem [6], [17],
including Footprint-k (F-k), StatisticalArea-k (SA-k), nuts,
adm1, gadm1, gadm2, and adm2 (17 in total), as shown in
Table I, where F-k, SA-k are basic networks. Since the focus
of this paper is not the path consistent or partial path consistent
algorithm, in order to eliminate the impact, all data sets are
preprocessed with the partial path consistent algorithm. Table I
shows the number of constraints after processing.

Based on the latest literature, we selected three baseline al-
gorithms for comparative analysis, including prime [17], sim-
ple, and extended. Prime is the implementation of Algorithm 1
in this paper, and is the state of the art that is a complete algo-
rithm (can ensure all redundant constraints are found). Simple
and extended are from [5], which are incomplete algorithms.
Among them, simple only checks whether there is vk 6= vi, vj
for a N [vi, vj ] such that N [vi, vk] � N [vi, vk] ⊆ N [vi, vj ],
while extended needs to maintain an additional directed graph
structure to assist identifying redundant constraints.

The main concern of this paper is the computation effi-
ciency, which will be evaluated by the total time used to
identify and remove all redundant constraints in a network.
For the distributed algorithm proposed in this paper, we also
measure the commonly used speedup ratio (the ratio of single-
node computing time to multi-node computing time). The

TABLE I
DETAILS OF DATA SETS.

#variables #constraints #redundancies
SA-1 51 1275 936
SA-2 100 4950 4146
SA-3 196 19110 17395
SA-4 376 70500 66319
SA-5 659 2.1× 105 2.1× 105

SA-6 1562 1.219× 106 1.200× 106

F-1 108 5778 2542
F-2 217 23436 15618
F-3 434 93961 66106
F-4 867 3.7× 105 2.9× 105

F-5 1736 1.5× 106 1.3× 106

F-6 3470 6.0× 106 5.7× 106

nuts 2239 3392 1143
adm1 11766 1.5× 106 1.49× 106

adm2 1.7× 106 8.8× 106 6.9× 106

gadm1 42753 6.6× 106 6.5× 106

gadm2 2.7× 105 6.0× 105 3.0× 105

SA-1 SA-2 SA-3 SA-4 SA-5 F-1 F-2 F-3 nuts gadm2
data set
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2

4

6

8

10
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e 

(s
)

natural
random
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prime
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Fig. 4. Results on easier data sets.

experimental platform in this paper is Ubuntu 18.04, CPU i7-
8700 3.2GHz, RAM 64GB, with Spark 3.1.1 and Python 3.6.
In order to avoid the impact of network communication on
the analysis of essential performance, we use multiple CPU
cores on the same server as computation nodes for distributed
computation. In order to analyze the influence of the number
of computation nodes, we will evaluate the computation time
using 1 to 6 cores with a 1 core increment.

B. Results and Analysis

To show the results clearly, this paper divides the data sets
into two groups. The first group is the group with shorter
computation time, called the easier data sets, and the second
group is the group with longer calculation time, called the
harder data sets. The results are shown in Fig. 4 and Fig. 5
(all results are repeated Average of 10 experiments).

Since the distributed algorithm has additional overhead for
initialization and allocation, its advantage is not obvious for
the easier data sets, and sometimes it is even slower than the
baseline algorithms, which is as expected. On the other hand,
for the harder data sets, in most cases distributed algorithms
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Fig. 5. Results on harder data sets.

greatly improved the computation efficiency. Specifically for
adm1, gadm1, and adm2, the distributed algorithm based
on group allocation (group) has speedup ratios around 4,
which shows that distributed algorithms do have the potential
to significantly improve the efficiency. Comparing the three
different allocation algorithms, it can be seen that natural is
inferior, random is slightly better, and group has the best
performance. This is because natural is likely to assign time-
consuming tasks to the same computing core, which results in
an obvious “long tail” phenomenon. Although random has a
better average performance than natural, as it allocates tasks
to different cores in no order, the data access is almost random,
which is less efficient. On the contrary, group allocates tasks
of a variable to the same core, so the data access is sequential
and is more efficient. As stated in Theorem 3, this usually
makes the load of each core balanced and thus avoids an
obvious “long tail” phenomenon. This can also be seen from
the results in Fig. 6, where the computation time for each
core is recorded for adm2 with 6 cores. Note that the total
computation time for all the cores should have been the same
if there is no difference in data access, as the total number
of calculations are the same for any allocation algorithm. In
fact, group takes about 120 seconds less than random, which
shows that group indeed has the advantage in data access.
In addition, natural has an obvious ”long tail” phenomenon.
The above results show that for the redundancy problem, the
distributed algorithm with group allocation has significant
advantages.

Figs. 7 and 8 are the results of the distributed algorithms
based on the three allocation algorithms with varying number
of cores on the easier data set SA-5 and the harder data
set adm2. On the harder data set, the speedup ratio usually
increases as the number of cores increases, but the rate of
change becomes smaller gradually. This is normal, because
increasing the number of cores causes additional overhead. On
the easier data set, since the overhead of distributed algorithm
accounts for a large proportion, increasing the number of cores
does not have significant improvement on the computation
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Fig. 6. Comparison of different allocation algorithms
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Fig. 7. Results on the easier data set SA-5 by varying the number of
computation cores.

time and can sometimes even increase the time instead. This
shows that the distributed algorithm proposed in this paper is
more appropriate for more complex large-scale data sets, and
it is necessary to consider the balance between economy and
efficiency.

In summary, the distributed approach proposed in this paper
can significantly improve the efficiency of the redundancy
algorithm, and thus enhance the ability to process more
complex large-scale data, which is a significant improvement
of the existing algorithms.

VI. SUMMARY AND OUTLOOK

This paper proposed a novel distributed model that can
significantly improve the efficiency of identifying and re-
moving redundant constraints in large-scale data sets. By
analysing the properties of the distributed subalgebra, we
proved the feasibility of the distributed model. Based on
the characteristics of qualitative relations in data sets, we
proposed optimizations of the model and demonstrated their
effectiveness. Finally, the performance of the proposed model
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and optimizations is analysed through extensive experiments,
comparing baseline algorithms and different optimizations on
multiple real-world data sets. The experimental results verified
that the distributed model performs well on the redundancy
problem for large-scale data sets. Since distributed algorithms
enable data privacy between different computation nodes, in
the future we will study the mechanism of the proposed
algorithm to protect privacy and security for qualitative spatio-
temporal data.
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