
The Knowledge Engineering Review, Vol. 00:0, 1–24. © 2004, Cambridge University
Press
DOI: 10.1017/S000000000000000 Printed in the United Kingdom

A Framework for Belief Revision Under Restrictions1

Zhiguo Long1, Hua Meng2, Tianrui Li1, Heng-Chao Li3 and Michael Sioutis4

1School of Computing and Artificial Intelligence, Southwest Jiaotong University, China
2School of Mathematics, Southwest Jiaotong University, China
E-mail: menghua@swjtu.edu.cn (corresponding author: Hua Meng)
3School of Information Science and Technology, Southwest Jiaotong University, China
4Faculty of Information Systems and Applied Computer Sciences, University of Bamberg, Bamberg, Germany

Abstract

Traditional belief revision usually considers generic logic formulas, whilst in practical applications

some formulas might even be inappropriate for beliefs. For instance, the formula p ∧ q is

syntactically consistent and is also an acceptable belief when there are no restrictions, but it

might become unacceptable under restrictions in some context. If we assume that p represents

“manufacturing product A” and q represents “manufacturing product B”, an example of such

a context would be the knowledge that there are not enough resources to manufacture them

both and, hence, p ∧ q would not be an acceptable belief. In this article, we propose a generic

framework for belief revision under restrictions. We consider restrictions of either fixed or dynamic

nature, and devise several postulates to characterise the behaviour of changing beliefs when new

evidence emerges or the restriction changes. Moreover, we show that there is a representation

theorem for each type of restriction. Finally, we discuss belief revision of qualitative spatio-

temporal information under restrictions as an application of this new framework.

Keywords: Belief revision; AGM theory; Representation theorem; Restriction; Qualitative
spatio-temporal information

1 Introduction

Belief revision is about how an agent will change her belief when new evidence arrives. Logic-based

belief revision has been extensively studied in Artificial Intelligence for the past three decades

(Alchourron et al. 1985, Benferhat et al. 2005, Darwiche & Pearl 1997, Delgrande 2012, Jin &

Thielscher 2007, Katsuno & Mendelzon 1991). Alchourron et al. (1985) proposed the most famous

framework, called the AGM theory, which gives a syntactical characterisation of rational revision

operators. Katsuno & Mendelzon (1991) considered simplifying the AGM theory in the context

of propositional logic, and through a representation theorem they gave an equivalent semantic

characterisation of revision operators, such that the revision can be performed by choosing

interpretations (worlds). In these frameworks and their derivatives, the general procedure of

belief revision is to revise the agent’s current beliefs according to some new evidence, where some

basic rules (called postulates) are satisfied so that the result is rational. This revision procedure

can have applications in real world, such as the revision of qualitative spatial information (Hue &

Westphal 2012). Those traditional revision frameworks assume that each consistent logic formula

could be an acceptable belief or that every interpretation of the logic formula is allowed. However,

this setting could be too permissive in practical applications. In fact, the context of applications

would affect the acceptability of logic formulas or of interpretations in belief revision, and also

affect the behaviour of rational belief revision operators. Consider the following example.
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Example 1 Suppose that a factory has two sets of machinery for manufacturing products:

the first one manufactures product A and the second manufactures product B. Each set of

machinery needs 10 people to operate. Let p represent “product A is going to be manufactured”,

and q represent “product B is going to be manufactured”. One situation could be that there are

20 workers available in the factory, and the current belief is to manufacture product A, and there

comes new evidence (e.g., statistics from the market) saying to manufacture B. Then in this case

revising p by q resulting in p ∧ q would be fine, as there are enough workers to operate both sets

of machinery for manufacturing A and B. However, there could be another situation where there

are less than 20 workers available, say only 10 workers available. Then in this case the result of

revising p by q could not be p ∧ q anymore.

The above example shows that there are different restrictions in different situations, which

lead to different rational revision results. For example, because of physical laws or human

resources, sometimes p and q are mutually exclusive and sometimes not. Traditional belief revision

frameworks, e.g., the AGM framework, do not take care of this kind of situations, and direct

application of revision operators under such frameworks sometimes will not give satisfactory

results (we discuss this in more detail in Section 3).

To deal with situations where restrictions affect the results of revision, we use a subset

of possible worlds in the logic language to model such restrictions. This is a high level

characterisation, because it only concerns the “result” of a restriction, i.e. some worlds become

unacceptable and some formulas become inconsistent, rather than the cause of the result itself.

For instance, in the above example, the restriction actually says that the set of acceptable worlds

should be {p ∧ ¬q, ¬p ∧ q, ¬p ∧ ¬q} (assuming that the propositional language is generated by

p and q). This technique of modelling restrictions is applicable to many real-world settings. For

example, matches often have the restriction that, there is only one winner and thus any worlds

that have two winners are excluded; the domains of variables in applications can also be seen as

a restriction on the appropriate worlds, e.g., planning under limited resources that requires that

every world should not exceed the limit; location-based services where the points of interest are

given and hence worlds concerning the qualitative relations between them cannot be arbitrary.

Another idea to deal with such situations would be to include some kind of integrity

constraints (Katsuno & Mendelzon 1991, Grüne-Yanoff & Hansson 2009, Konieczny & Pérez 2002,

Qi et al. 2006, Lin & Mendelzon 1996), which is a set of formulas, to adjust the acceptability

of formulas accordingly. This idea is similar to our notion of restrictions. However, there are

substantial differences between revision under integrity constraints and revision under restrictions;

details will be discussed in Section 5. Moreover, how to perform belief revision rationally under

such constraints or restrictions has not been formally discussed before.

In addition, as we can see in the former example, such restrictions can change, i.e., restrictions

can be dynamic, and then the beliefs of the agent need to be adjusted accordingly when the

restrictions change. For instance, machinery for product B might become temporarily unavailable

because of maintenance, and then the restriction would be changed to {p ∧ ¬q, ¬p ∧ ¬q}. In this

case, the belief of the agent should also be adjusted, as some of the formulas in it become

unacceptable.

Then it is important to consider the problems of how to properly revise beliefs under

restrictions when new evidence emerges, and how to properly adjust original beliefs after

modifying restrictions. To address those and related problems, we propose a generic framework

that deals with belief revision under restrictions by restricting the set of acceptable worlds. For

the case of belief revision under fixed restrictions, we adapt the traditional AGM postulates

to our framework and demonstrate a distance-based revision operator that satisfies all the new

postulates. For the case of dynamic restrictions, we devise several postulates to characterise

how beliefs should be revised rationally when the restrictions change. We also show that for

both cases, belief revision under restrictions is equivalent to choosing minimal worlds w.r.t.

some special ordering. Therefore, a well-behaved operator can be easily devised by specifying
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an ordering of the worlds according to the need. With these results, we think that our generic

framework becomes an important part of the theoretical foundation for conducting belief revision

in real-world applications. In summary, the main contributions of this article are:

• We model restrictions semantically in terms of worlds, and propose a generic framework for

belief revision under restrictions.

• We devise rational postulates for belief revision under a fixed restriction.

• We give a syntactical characterisation for changing beliefs when the current restriction

is changed, through rational postulates, and give a semantic characterisation through a

representation theorem.

• We illustrate how this framework can be applied to the revision of qualitative spatio-temporal

information.

The remainder of this article is structured as follows. Section 2 introduces basic notions

concerning belief revision. In Section 3, we present the generic framework of belief revision under

restrictions. Section 4 discusses an application of the framework on revising qualitative spatio-

temporal information. Section 5 discusses several related works of the topic. Finally, Section 6

concludes the discussion.

2 Preliminaries

Before describing our framework of belief revision under restrictions, we first introduce some

background knowledge, concepts, and notations.

We restrict our discussion to a finite propositional language L and assume basic knowledge of

logic, such as the meaning of ≡, `, and |= (Hamilton 1988). Note that as propositional logic is

sound and complete, “a formula ϕ syntactically proves a formula ψ” (ϕ ` ψ) and “ϕ semantically

entails ψ” (ϕ |= ψ) are equivalent, where ϕ ` ψ means that from ϕ, by using axioms and deduction

rules of L, we can derive ψ, and ϕ |= ψ means that if ϕ is true for given truth values of the variables,

then ψ is also true. A theory K of L is a set of formulas that is deductively closed, i.e., ϕ ∈ K iff

K ` ϕ (ϕ can be derived by using the formulas in K). We say a theory K is complete iff for all

ϕ ∈ L either ϕ ∈ K or ¬ϕ ∈ K. We say a theory K is consistent if there is no formula ϕ s.t. ϕ ∈ K
and ¬ϕ ∈ K. A world is a consistent complete theory of L. Semantically, we can also consider

a world as an interpretation that maps each propositional variable to True or False. Here, we

will use an equivalent formula of conjunctions of literals (variables or negation of variables) to

represent a world. For example, if L is a propositional language generated by {p, q}, then the

formula ¬p ∧ q represents the world that maps the variables p to False and q to True. We denote

by W the set of all the worlds in L.

For each formula ϕ ∈ L, we denote by [ϕ] the set of all the worlds that semantically entail ϕ,

i.e. [ϕ] = {ω ∈W | ω |= ϕ}, and call [ϕ] the set of worlds of ϕ. If a world ω is in [ϕ], then we say

ω satisfies ϕ. Similarly, for each set of formulas Γ, we denote by [Γ] = {ω ∈W | ∀ϕ ∈ Γ, ω |= ϕ}
the set of common worlds of the formulas in Γ, and Cn(Γ) = {ϕ | [Γ]⊆ [ϕ]} the set of formulas

that Γ logically implies. When Γ = {ϕ}, for ease of representation, we will write [{ϕ}] as [ϕ] and

Cn({ϕ}) as Cn(ϕ) by abuse of the notation. We say a set of formulas Γ (a formula ϕ, respectively)

is consistent in L if [Γ] 6= ∅ ([ϕ] 6= ∅, respectively).

The most famous belief revision framework is the AGM, which contains eight postulates. In

the AGM theory, the beliefs of an agent are represented by a theory that is called a belief set. A

revision operator ◦ is a function that maps a belief set and a formula to a new belief set. There are

two important principles in the AGM theory. One is the success principle: new evidence should

be put into the revision result. The other one is the minimal change principle, which requires

the agent to maintain the belief information from K to K ◦ ϕ as much as possible. The following

postulates from (Alchourron et al. 1985) respect these two principles.

(K ∗ 1) K ◦ ϕ is a theory of L.
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(K ∗ 2) ϕ ∈ K ◦ ϕ.

(K ∗ 3) K ◦ ϕ⊆ Cn(K ∪ {ϕ}).

(K ∗ 4) If K ∪ {ϕ} is consistent then Cn(K ∪ {ϕ})⊆K ◦ ϕ.

(K ∗ 5) If ϕ is consistent then K ◦ ϕ is consistent.

(K ∗ 6) If ϕ≡ ψ then K ◦ ϕ=K ◦ ψ.

(K ∗ 7) K ◦ (ϕ ∧ ψ)⊆ Cn((K ◦ ϕ) ∪ {ψ}).

(K ∗ 8) If Cn((K ◦ ϕ) ∪ {ψ}) is consistent then Cn((K ◦ ϕ) ∪ {ψ})⊆K ◦ (ϕ ∧ ψ).

A revision operator ◦ that satisfies (K ∗ 1)-(K ∗ 8) is called an AGM revision operator. It should

be noted that, in propositional logic, Katsuno & Mendelzon (1991) proposed another framework

(KM) of revision and showed that the above eight postulates are equivalent to their proposed

framework. In this article, we develop our extension of revision following AGM notations, whereas

our work can also naturally extend to the KM framework.

Note that if a belief set K is inconsistent, then we have K = L. In this case we shall have

K ◦ ϕ= Cn(ϕ).

The concept of preorder plays an important role in belief revision. A preorder � on a non-

empty set E is a binary relation on E that is reflexive and transitive. A preorder � is called total

if any two elements in E are comparable under �, i.e., for any x, y ∈ E, we have x� y or y � x.

We write x∼ y if x� y and y � x, and x≺ y if x� y but y 6� x.

Definition 1 (Faithful total preorder) Suppose F ⊆W . Then a total preorder � on W is

called faithful at F if it satisfies the following conditions:

• If ω, ω′ ∈ F , then ω � ω′ and ω′ � ω (i.e. ω ∼ ω′).

• If ω ∈ F and ω′ 6∈ F , then ω � ω′ but ω′ 6� ω (i.e. ω ≺ ω′).

Katsuno & Mendelzon (1991) gave a representation theorem with the notion of faithful

assignment.

Definition 2 (Faithful assignment (Katsuno & Mendelzon 1991)) A faithful assign-

ment is a function that maps each belief set K to a total preorder �K, such that �K is faithful

at [K], and for any belief set J , if J ≡K, then �J =�K.

Suppose � is a total preorder. Let min(A,�) denote the set {a ∈A | ∀b ∈A, a� b}. When A is

a set of worlds, min(A,�) is called the minimal worlds of A. We have the following representation

theorem.

Theorem 1 (From (Katsuno & Mendelzon 1991)) A revision operator ◦ satisfies (K ∗
1)-(K ∗ 8) precisely when there exists a faithful assignment such that

[K ◦ ϕ] = min([ϕ],�K).

In other words, an AGM revision operator is equivalent to selecting minimal worlds based on

some total preorder, and a total preorder on W determines an AGM revision operator.

3 Belief Revision Under Restrictions

Given a logic language L, traditional belief revision operates on W , viz., the set of all the

worlds of L. However, as illustrated in Example 1, some worlds might not be acceptable in

some circumstances. By restricting the set of acceptable worlds, a consistent formula in L might

not be consistent anymore and thus cannot be considered as an acceptable belief in traditional

belief revision. In the following, we discuss how to deal with belief revision when the set of worlds

is restricted. The first task is to determine what is an acceptable belief in the new case.
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Definition 3 (Consistency under restriction) Given a subset C of W , we say a formula

ϕ in L is consistent under the restriction of C, in short, consistent under C, iff there is some

ω ∈ C such that ω |= ϕ. Similarly, a set Γ of formulas in L is consistent under C iff there is some

ω ∈ C such that ∀ϕ ∈ Γ, ω |= ϕ. Here, the set C is called a restriction.

For example, for the second case in Example 1 where it is impossible to satisfy both p and q

at the same time due to limited resources, the restriction C is {p ∧ ¬q, ¬p ∧ q, ¬p ∧ ¬q}, saying

that any world with p and q both true is not acceptable, and p is consistent under C while

p ∧ q is inconsistent under C. Note that when C =W , then a formula is consistent under C iff

it is consistent in L and we fall back to traditional belief revision. A (potential) belief under the

restriction of C is defined as follows.

Definition 4 (Beliefs under restriction) The set of (potential) beliefs under the restric-

tion of C, in short, beliefs under C, denoted by LC , is the set of formulas that are consistent

under C, i.e. LC = {ϕ ∈ L | ∃ω ∈ C, ω |= ϕ}.

Here, the word “potential” means that a formula consistent under C is a candidate of beliefs, and

it can be a belief of some specific agent. If C = ∅, then LC = ∅, i.e. there are no beliefs under

C, which would be trivial for discussion. Therefore, we assume in this article that a restriction

C is always non-empty. As an example, the formula p is a belief under the restriction of C =

{p ∧ ¬q, ¬p ∧ q, ¬p ∧ ¬q}. In the context of Example 1, p means manufacturing product A and

the restriction means that A and B cannot be manufactured at the same time.

For LC , it is possible that ϕ ∈ LC but ¬ϕ 6∈ LC , and ϕ, ψ ∈ LC but ϕ ∧ ψ 6∈ LC . However, it

is easy to verify the following properties:

• C ⊂ LC (when we consider a world as a conjunction formula of literals);

• if ∃ϕ ∈ LC s.t. ϕ |= ψ, then ψ ∈ LC ;

• if ϕ, ψ ∈ LC , then ϕ ∨ ψ ∈ LC .

Similar to the notation [ϕ], [ϕ]C is used to denote the set of worlds of ϕ under the restriction

of C, i.e. [ϕ]C = {ω ∈ C | ω |= ϕ}= [ϕ] ∩ C, and for all Γ⊆ LC , we denote by [Γ]C = {ω ∈ C |
∀ϕ ∈ Γ, ω |= ϕ} the set of common worlds of the formulas in Γ under that same restriction of

C. For Γ1, Γ2 ⊆ LC , we denote by Γ1 ≡C Γ2 iff [Γ1]C = [Γ2]C . For example, [p]C = {p ∧ ¬q}, for

C = {p ∧ ¬q, ¬p ∧ q, ¬p ∧ ¬q} and {p} ≡C {p ∧ ¬q}.
We can also define a consequence operator CnC(·) on LC by CnC(Γ) = {ϕ ∈ LC | [Γ]C ⊆ [ϕ]C},

where Γ⊆ LC . In particular, if [Γ]C = ∅ then CnC(Γ) = LC which is similar to Cn(False) = L in

traditional setting. This operator constructs the deductively closed set of formulas for Γ under

C. For example, for Γ = {p} and C = {p ∧ ¬q, ¬p ∧ q, ¬p ∧ ¬q}, CnC(Γ) will contain formulas

like p, p ∨ q, p ∧ ¬q. Note that p ∧ ¬q ∈ CnC(Γ) while p ∧ ¬q 6∈ Cn(Γ), which is because under the

specific C, saying p is the same as saying p ∧ ¬q.
With the operator CnC(·), we can now formally define a belief set under the restriction of C.

Definition 5 (Belief set under restriction) A belief set K under the restriction of C (in

short, belief set under C) is a subset of LC that is closed under CnC(·).

For instance, for C = {p ∧ ¬q, ¬p ∧ q, ¬p ∧ ¬q}, CnC({p}) = {p, p ∨ q, p ∧ ¬q, . . .} is a belief set

under the restriction of C. In the following discussion, we always assume that a belief set under

a restriction is consistent under that restriction, as an agent should be rational. Also, we should

assume that a new evidence ϕ is always consistent under C, i.e. a belief under C. If ϕ is not

consistent under C, we could of course define the revision result to be LC , following the convention

in the AGM framework, which however is trivial for discussion.

Furthermore, it is easy to verify the following lemma by use of Definition 5.

Lemma 1 • If K is a consistent belief set under the restriction of C, then [K]⊆ C and

CnC(K) = Cn(K) =K.
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• If K is a belief set on L, then CnC(K) =K′ where K′ is the belief set under the restriction of

C and [K′]C = [K′] = [K] ∩ C.

Belief revision under restrictions is about the revision of a belief set K under C with a new

belief ϕ. In the context of Example 1, the second case involves the restriction C = {p ∧ ¬q, ¬p ∧
q, ¬p ∧ ¬q}, a belief set K = CnC({p}) = {p, p ∨ q, p ∧ ¬q, . . .}, and a new belief q. The major

problem is how the revision under restrictions should behave. Note that the original AGM revision

postulates are not appropriate to characterise revision under restrictions, because the background

language has changed, and some beliefs in the AGM framework will not be beliefs any more under

certain restrictions. In what follows, we will first discuss the case of belief revision under a fixed

restriction, and then the case of belief revision under a dynamic restriction.

3.1 Revision Under a Fixed Restriction

Let L be a propositional logic language and C be a subset of worlds of L. In this subsection, we

will discuss belief revision under the restriction of C.

Let ? specifically denote a revision operator under the restriction of C. It is important to

determine the postulates that ? should satisfy, in order to see how belief revision under the

restriction of C should behave. For example, following the idea of the “success principle” and

the “minimal change principle” in traditional belief revision, if ϕ is consistent under C and

[K]C ∩ [ϕ]C 6= ∅, it will be natural to define [K ? ϕ]C = [K]C ∩ [ϕ]C , i.e. K ? ϕ= CnC(K ∪ {ϕ}).
Then how about the case when [K]C ∩ [ϕ]C = ∅, and exactly what postulates will such a revision

operator satisfy? To answer these questions, we propose a natural generalisation of the AGM

postulates for belief revision under the restriction of C as follows. It should be noted that here

K = CnC(K), that is, K can only contain worlds from C.

(C ∗ 1) K ? ϕ is a belief set under C.

(C ∗ 2) If ϕ is a belief under C, then ϕ ∈ K ? ϕ.

(C ∗ 3) K ? ϕ⊆ CnC(K ∪ {ϕ}).

(C ∗ 4) If K ∪ {ϕ} is consistent under C, then CnC(K ∪ {ϕ})⊆K ? ϕ.

(C ∗ 5) If ϕ is a belief under C, then K ? ϕ is consistent under C.

(C ∗ 6) If ϕ and ψ are beliefs under C, and {ϕ} ≡C {ψ}, then K ? ϕ=K ? ψ.

(C ∗ 7) If ϕ and ψ are beliefs under C, then K ? (ϕ ∧ ψ)⊆ CnC((K ? ϕ) ∪ {ψ}).

(C ∗ 8) If ϕ and ψ are beliefs under C, and CnC((K ? ϕ) ∪ {ψ}) is consistent under C, then

CnC((K ? ϕ) ∪ {ψ})⊆K ? (ϕ ∧ ψ).

Note that when C =W , the above postulates would be exactly the AGM ones. (C ∗ 1) says that

the result of revision should be a deductively closed set of formulas under C. (C ∗ 2) means that

when the new information ϕ is consistent under C, then it should be included in the result of

revision. (C ∗ 3) and (C ∗ 4) together mean that whenever the new information is consistent with

the current belief set, under the restriction C, the revision result should contain exactly all the

beliefs that are consistent with the current belief set and the new information, under C. This is

essentially the minimal change principle in that specific case. (C ∗ 5) says that the revision result

should be consistent under C if the new information is consistent under C. (C ∗ 6) corresponds

to the irrelevance of syntax postulate in AGM theory, saying that two sources of new information

that are equivalent under C should result in the same revision result. (C ∗ 7) and (C ∗ 8) together

say that if K ? ϕ is consistent with ψ under C, then the revision result of K ? (ϕ ∧ ψ) is exactly

the expansion of the result K ? ϕ to include ψ.

Sometimes, we need to use a set of worlds as a formula, and for convenience, we define Form(S)

to be a formula whose worlds are exactly those in S, i.e., [Form(S)] = S.
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Remark 1 Consider a subset C of W and let γ = Form(C). One might wonder if revision

under restrictions can be characterised by AGM postulates. Naturally, there are two possibilities

to incorporate restrictions using AGM operator: K �1 ϕ≡K ◦ (ϕ ∧ γ) and K �2 ϕ≡ CnC(K ∪
{γ}) ◦ (ϕ ∧ γ). The first operator �1 was considered in (Katsuno & Mendelzon 1991) and is

actually not an operator under restriction, which will be discussed later in the related work

section. The second one �2 has the same result as an operator under restriction for some

cases. Neither of these two operators is an AGM operator, as they contradict against the

original AGM postulates. This can be seen from the following example. Let C ⊂W , i.e. some

of the worlds are not in the restriction, K = Cn(Form({ω1, ω3})), and ϕ= Form({ω2, ω3}),
where ω1, ω2 ∈ C and ω3 ∈W \ C. Assume on the contrary that �1 and �2 are AGM operators.

Then �1 and �2 should satisfy (K ∗ 3) and (K ∗ 4), and we have [K �1 ϕ] = [K �2 ϕ] = {ω3}.
However, as [ϕ ∧ γ] = {ω2} and ◦ is an AGM operator, which should satisfy (K ∗ 2) and

(K ∗ 5), then [K ◦ (ϕ ∧ γ)] = [CnC(K ∪ {γ}) ◦ (ϕ ∧ γ)] = {ω2}. Therefore, K �1 ϕ 6≡ K ◦ (ϕ ∧ γ),

K �2 ϕ 6≡ CnC(K ∪ {γ}) ◦ (ϕ ∧ γ), that is, the two operators do not satisfy AGM postulates. This

illustrates that revision under restriction cannot be fully characterised by the original AGM

postulates.

For illustration of how a revision operator satisfying (C ∗ 1)-(C ∗ 8) works, consider again the

context of Example 1. The restriction C is {p ∧ ¬q, ¬p ∧ q, ¬p ∧ ¬q} saying that A and B cannot

be manufactured at the same time. In one case, the current belief is ¬p, corresponding to the belief

set CnC({¬p}), and the new information is ¬p ∧ ¬q, i.e. “A and B will not be manufactured”.

Then, since ¬p and ¬p ∧ ¬q are consistent under C, according to (C ∗ 3) and (C ∗ 4), the revision

result would be CnC({¬p, ¬p ∧ ¬q}) = CnC({¬p ∧ ¬q}), meaning “to manufacture neither A nor

B”. Another case is that the current belief is p, corresponding to the belief set CnC({p}). The

new information is q. Note that q is inconsistent with p under C. In this case, what we know

from the postulates (C ∗ 2) and (C ∗ 5) is that q will be in the result of revision and p will not,

meaning “to manufacture B but not A”. This is different from revising p by q with an AGM

revision operator, which will result in Cn({p ∧ q}), meaning “to manufacture both A and B”.

Since all the worlds that are not in C are considered impossible, a faithful assignment on LC
can be defined as follows.

Definition 6 (Faithful assignment on LC) A faithful assignment on LC is a function that

maps each belief set K under C to a total preorder �K, such that �K is faithful at [K]C

(cf. Definition 1) and

• if J ≡C K then �J and �K are equal on C; and

• if ω 6∈ C then for all ω′ ∈ C, ω′ ≺K ω.

Naturally, the original representation theorem (Theorem 1) can also be generalised to LC .

Theorem 2 (Representation Theorem I) A revision operator ? satisfies (C ∗ 1)-(C ∗ 8) if

and only if there exists a faithful assignment on LC that maps each K to a total preorder �K
such that

[K ? ϕ]C = min([ϕ]C ,�K). (1)

Proof The proof idea would be similar to the one in (Katsuno & Mendelzon 1991) for Theorem 1

and thus we only show a sketch here.

For the if part, suppose there is a faithful assignment on LC that maps each K to a total

preorder �K. Then Equation 1 induces a revision operator that K ? ϕ= CnC(min([ϕ]C ,�K)).

Now we need to show ? satisfies (C ∗ 1)-(C ∗ 8). (C ∗ 1)-(C ∗ 3) follows straightforwardly from

the definition of ?. Here we take(C ∗ 7) as an example, as the others are similar or simpler.

Assume ϕ and ψ are beliefs under C. If ϕ ∧ ψ is inconsistent under C, that is, [ϕ]C ∩ [ψ]C =

∅, then K ? (ϕ ∧ ψ) = LC . Since [K ? ϕ]C = min([ϕ]C ,�K)⊆ [ϕ]C , we have [K ? ϕ]C ∩ [ψ]C = ∅
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and CnC((K ? ϕ) ∪ {ψ}) = LC . Then K ? (ϕ ∧ ψ)⊆ CnC((K ? ϕ) ∪ {ψ}). If ϕ ∧ ψ is consistent

under C, then [K ? (ϕ ∧ ψ)]C = min([ϕ ∧ ψ]C ,�K) and [K ? ϕ]C = min([ϕ]C ,�K), where min([ϕ ∧
ψ]C ,�K) is non-empty because �K is a total preorder. If min([ϕ]C ,�K) ∩ [ψ]C = ∅, i.e., [K ?
ϕ]C ∩ [ψ]C = ∅, then K ? (ϕ ∧ ψ)⊆ CnC((K ? ϕ) ∪ {ψ}) = CnC(∅) = LC . If min([ϕ]C ,�K) ∩
[ψ]C 6= ∅ then min([ϕ]C ,�K) ∩ [ψ]C = min([ϕ]C ∩ [ψ]C ,�K) = min([ϕ ∧ ψ]C ,�K), i.e., CnC((K ?
ϕ) ∪ {ψ}) =K ? (ϕ ∧ ψ). Therefore, K ? (ϕ ∧ ψ)⊆ CnC((K ? ϕ) ∪ {ψ}).

For the only if part, we need to show that for each revision operator ? satisfying (C ∗ 1)-(C ∗ 8)

there is a faithful assignment on LC such that [K ? ϕ]C =min([ϕ]C ,�K). Here we only show how

to construct the total preorder �K given ? and K. Suppose ω1, ω2 ∈W . Then

• If ω1, ω2 ∈ C and [K ? Form({ω1, ω2})]C = {ω1} then we define ω1 ≺K ω2.

• If ω1, ω2 ∈ C and [K ? Form({ω1, ω2})]C = {ω1, ω2} then ω1 ∼K ω2.

• If ω1 ∈ C and ω2 6∈ C, then [K ? Form({ω1, ω2})]C = {ω1} by (C ∗ 1)-(C ∗ 2).In this case we

define ω1 ≺K ω2.

• If both ω1 and ω2 are not in C, then the ordering of ω1 and ω2 does not matter and can be

any fixed one such as ω1 ∼K ω2 .

It is not difficult to verify that �K is a faithful total preorder at C and the map from K to �K
is a faithful assignment on LC , as well as that [K ? ϕ]C = min([ϕ]C ,�K) is satisfied. 2

With the above representation theorem, we know that a revision operator for belief revision

under the restriction of C is equivalent to selecting minimal worlds based on some total preorder

on the worlds; conversely, by specifying a total preorder on the worlds, we can define a revision

operator for revision under the restriction of C.

There are several possible candidates of the revision operator ?. For belief merging and

revision for qualitative constraints, we have already seen some researchers (Hue & Westphal 2012,

Condotta et al. 2008, Dufour-Lussier et al. 2014) using operators induced by pseudo-distances.

Here, we show that a revision operator ? based on some pseudo-distance satisfies the postulates

(C ∗ 1)-(C ∗ 8) we proposed.

Definition 7 A mapping d from W ×W to R is a pseudo-distance if we have that

1. for ω, ω′ ∈W , d(ω, ω′)≥ 0, and d(ω, ω′) = 0 iff ω = ω′; and

2. ∀ω, ω′ ∈W , d(ω, ω′) = d(ω′, ω).

Definition 8 A revision operator ?d based on the pseudo-distance d can be defined as

[K ?d ϕ]C = {ω ∈ [ϕ]C | ∀ω′ ∈ [ϕ]C , d(ω, [K]C)≤ d(ω′, [K]C)}, (2)

where

d(ω, [K]C) =

{
0 if ω ∈ [K]C ;∑

ωi∈[K]C d(ω, ωi) if ω 6∈ [K]C .
(3)

Note that when defining d(ω, [K]C) in Definition 8, we used the aggregation operator
∑

(Lin

1996) for illustration of defining the distance, while other aggregation operators can also be used,

e.g., the min (Condotta et al. 2009b) or max (Revesz 1997) operators.

Example 2 Consider Example 1. There are three worlds in C, say ω1, ω2, ω3 corresponding

to p ∧ ¬q, ¬p ∧ q, ¬p ∧ ¬q respectively. The pseudo-distance d between the worlds is defined as

d(ω1, ω2) = 2, d(ω1, ω3) = 1, d(ω2, ω3) = 1 (Hamming’s distance of the corresponding formulas).

The current belief is “to manufacture A”, corresponding to the belief set K = CnC(Form({ω1})),
and the new information is “to manufacture B or to manufacture neither”, corresponding to

the belief ϕ= q ∨ ¬(p ∨ q). As [K]C = {ω1} and [ϕ]C = {ω2, ω3} (note that {q} ≡C {¬p ∧ q}),
we have [K ?d ϕ]C = {ω ∈ [ϕ]C | ∀ω′ ∈ [ϕ]C , d(ω, [K]C)≤ d(ω′, [K]C)}= {ω3}. The revision result

means “to manufacture neither”, as ω3 is more close to [K]C under the defined distance. This
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is expected, because the current restriction C means that “A and B cannot be manufactured

simultaneously” (probably due to resource limitation). Under such restriction, the current belief

is actually “to manufacture A but not B” and the new information is “to manufacture B but

not A, or to manufacture neither”. Without such restriction, the revision result would then be

“to manufacture both”.

The following proposition confirms that ?d satisfies (C ∗ 1)-(C ∗ 8).

Proposition 1 Suppose d is any pseudo-distance on W and ?d is a belief revision operator

defined as in Definition 8. Then ?d satisfies (C ∗ 1)-(C ∗ 8).

Proof According to the definition of d(ω, [K]C) given in Equation 3, for each K, the distance

d(ω, [K]C) between any world ω and K actually induces a total preorder �K defined as follows:

• ω1 �K ω2 if ω1, ω2 ∈ C and d(ω1, [K]C)≤ d(ω2, [K]C).

• ω1 ≺K ω2 if ω1 ∈ C and ω2 6∈ C.

• ω1 ∼K ω2 if ω1, ω2 6∈ C.

Next we show that �K is faithful at [K]C . Suppose ω1, ω2 ∈ C and ω1 ∈ [K]C . If ω2 ∈ [K]C then

ω1 ∼K ω2 by d(ω1, [K]C) = d(ω2, [K]C) = 0. If ω2 6∈ [K]C then ω1 ≺K ω2 by d(ω2, [K]C)> 0. Hence

�K is faithful at [K]C .

Then we verify that the function f :K 7→�K is a faithful assignment on LC (cf. Definition 6).

If two belief sets J and K are equivalent under C, i.e. J ≡C K, then [J ]C = [K]C . According to

the above definition of the total preorder, it is easy to see that �J and �K are equal on C, and

if ω 6∈ C then for all ω′ ∈ C, ω′ ≺K ω.

Finally, we show that [K ?d ϕ]C = min([ϕ]C ,�K). Since [K ?d ϕ]C = {ω ∈ [ϕ]C | ∀ω′ ∈
[ϕ]C , d(ω, [K]C)≤ d(ω′, [K]C)}, we have ω1 ∈ [K ?d ϕ]C iff ω1 �K ω2 for all ω2 ∈ [ϕ]C . That is

to say, [K ?d ϕ]C = min([ϕ]C ,�K). Therefore, by the Representation Theorem I, the revision

operator ?d satisfies (C ∗ 1)-(C ∗ 8). 2

Note that ?d does not satisfy all the AGM postulates. Take (K ∗ 3) and (K ∗ 4) as an example.

Consider W = {ω1, ω2, ω3, ω4}, C = {ω1, ω4}, [K] = {ω1, ω2}, and [ψ] = {ω2, ω4}. (K ∗ 3) and

(K ∗ 4) say that K ?d ψ should be Cn(K ∪ {ψ}), because K ∪ {ψ} has a world ω2 and is thus

consistent in L. However, [K ?d ψ]C is {ω4}. Therefore, K ?d ψ = CnC(Form({ω4})) 6=K ∪ {ψ},
violating (K ∗ 3) and (K ∗ 4).

Remark 2 Apart from using a distance to define a revision operator under restriction, we

can also make use of some faithful assignment on LC that defines a total preorder �K on the

worlds in C. Such an ordering could reflect certain preference of the agent. For example, Spohn

(1988) introduced a function that associates each world with a natural number, and thus a total

preorder on the worlds is established that can be used to define a revision operator.

3.2 Revision Under a Dynamic Restriction

In the previous subsection, we discussed how an agent changes her beliefs under some fixed

restriction when new evidence emerges. However, in many real world applications, an agent may

also receive new restrictions and needs to adjust beliefs accordingly. For instance, consider the

following example.

Example 3 Following Example 1, let p represent “product A is going to be manufactured”,

and q represent “product B is going to be manufactured”. The current restriction is C =

{p ∧ ¬q, ¬p ∧ ¬q}, that may be described as “product B cannot be manufactured because of

machinery maintenance”. The current belief is “Some products are going to be manufactured,

but without the knowledge of which one”. Then under the restriction C, the current belief set
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can be represented as K = CnC({p ∧ ¬q}), meaning “product A is going to be manufactured

but not B”. Then suppose the maintenance of machinery for product B has already finished, but

maintenance of machinery for product A has started. So actually product B can be manufactured

but not A. The restriction C is thus changed to C ′ = {¬p ∧ q, ¬p ∧ ¬q}. Since the current belief set

is CnC({p ∧ ¬q}), which is not appropriate under the new restriction C ′, the belief set needs to be

revised accordingly. If we consider using the new restriction as a new belief (¬p ∧ q) ∨ (¬p ∧ ¬q)
to revise K, then the new belief set will be CnC({¬p ∧ ¬q}) by (C ∗ 2) and (C ∗ 5). However, this

should not be the only possible result. For example, as the previous belief set indicates that some

products are manufactured, then ¬p ∧ q, which means “product B is going to be manufactured

but not A”, might be more appropriate to be included into the new belief set.

In fact, the result after changing the restriction would depend on the preferences of the newly

allowed worlds, and the behaviour of a chosen operator might not conform to (C ∗ 1)-(C ∗ 8),

such as an operator giving the result with the world ¬p ∧ q in the above example. Therefore,

in what follows we will discuss some postulates to characterise how an agent should change her

beliefs when the restriction changes.

Recall that, in this article, a restriction is a subset of worlds. Let the current restriction be C

and the current belief set under C be KC . When the restriction changes to C ′, KC will change

to a new set KC . C ′, where the mapping . takes (C,KC , C ′) as input. Similar to the previous

discussion, we propose some postulates that a rational mapping . should satisfy. The following

postulates (R ∗ 1)-(R ∗ 4) characterise several very basic conditions for a mapping . to be rational.

(R ∗ 1) KC . C ′ is a belief set under C ′.

(R ∗ 2) If KC is consistent under C, then KC . C ′ is consistent under C ′.

(R ∗ 3) KC . C ′ ⊆ CnC
′
(KC ∪ {Form(C ′)}), where Form(C ′) is a formula whose worlds are

exactly those in C ′.

(R ∗ 4) If KC is consistent under C ′, then CnC
′
(KC ∪ {Form(C ′)})⊆KC . C ′.

(R ∗ 1) means that the resulting set KC . C ′ after changing the restriction is deductively closed

under the new restriction. (R ∗ 2) says that if the original belief set is consistent under the original

restriction, then the result is also a consistent belief set under the new restriction. (R ∗ 3) and

(R ∗ 4) state that if [KC ]C ∩ C ′ is a non-empty set then the result is exactly the deductive closure

of KC ∪ {Form(C ′)} in LC′
, i.e. KC . C ′ = CnC

′
(KC ∪ {Form(C ′)}) = CnC

′
(KC ∩ LC).

Note that in the case of belief revision under a fixed restriction C, the revision operator is

determined by preferences of the worlds in C. For the case where C becomes C ′, we would also

like to have a total preorder of worlds so that we can choose the worlds that are preferred.

The following postulate, when taken together with the above postulates, actually ensures a total

preorder on the worlds, for each given C, KC , and mapping ..

(R ∗ 5) If KC . (C1 ∪ C2)⊆KC . C1 and KC . (C2 ∪ C3)⊆KC . C2, then KC . (C1 ∪ C3)⊆KC .
C1.

Intuitively, (R ∗ 5) considers the transitivity of the ordering, i.e. if the worlds in C1 are preferred

over those in C2, and the worlds in C2 are preferred over those in C3, then the worlds in C1 are

preferred over those in C3.

Moreover, in order to characterise “minimal change” when revising the belief set, we propose

the following additional postulates for the preferences of worlds on different restrictions.

(R ∗ 6) Suppose C1, C2, C3 are pairwise disjoint restrictions, i.e., C1 ∩ C2 = ∅, C1 ∩ C3 = ∅, and

C2 ∩ C3 = ∅. Then KC . (C1 ∪ C2 ∪ C3) =KC . (C1 ∪ C2) iff KC . (C1 ∪ C3) =KC . C1

or KC . (C2 ∪ C3) =KC . C2.

(R ∗ 7) If KC . (C1 ∪ C2) =KC . C1 and C3 ⊆ C2, then KC . (C1 ∪ C3) =KC . C1.
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Intuitively, (R ∗ 6) means that for pairwise disjoint restrictions C1, C2, C3, if the union of C1 and

C2 is preferred over C3, then at least one of C1 and C2 is preferred over C3; (R ∗ 7) says that if

C1 is preferred over C2 and C3 is contained in C2, then C1 is preferred over C3.

The above postulates (R ∗ 1)-(R ∗ 7) were inspired by revision rules given in (Katsuno &

Mendelzon 1991). For these postulates, we have the following representation theorem.

Theorem 3 (Representation Theorem II) The mapping . satisfies (R ∗ 1)-(R ∗ 7) iff for

each restriction C and a consistent belief set KC under C, there is a total preorder �C,K on W

that is faithful at [KC ]C such that for each restriction C ′, [KC . C ′]C
′
= min(C ′,�C,K).

Proof Sufficiency is not difficult to verify. We take (R ∗ 5) as an example and the others

are similar. Suppose there is a total preorder �C,K of worlds, faithful at [KC ]C , such that

for each restriction C ′, [KC . C ′]C
′
= min(C ′,�C,K). From KC . (C1 ∪ C2)⊆KC . C1, we know

[KC . (C1 ∪ C2)]C1∪C2 ⊆ [KC . C1]C1 . This means min(C1 ∪ C2,�C,K)⊆min(C1,�C,K). Then

∀ω2 ∈ C2, there exists some ω1 ∈ C1 s.t. ω1 ≺C,K ω2. Similarly, from KC . (C2 ∪ C3)⊆KC . C2

we know that ∀ω3 ∈ C3, there exists some ω2 ∈ C2 s.t. ω2 ≺C,K ω3. Therefore, ∀ω3 ∈ C3, there

exists some ω1 s.t. ω1 ≺C,K ω3. This exactly means that min(C1 ∪ C3,�C,K)⊆min(C1,�C,K),

and hence KC . (C1 ∪ C3)⊆KC . C1 and (R ∗ 5) is satisfied.

Next, we show the necessity. Suppose . satisfies (R ∗ 1)-(R ∗ 7). In the following, we will

show how to construct a total preorder �C,K that is faithful at [KC ]C . For any ω, ω′ ∈W , let

C ′ = {ω, ω′}. Following (R ∗ 2) we have ∅ 6= [KC . C ′]C
′ ⊆ {ω, ω′}. Then we can define a binary

relation �C,K on C ′ as follows: ω �C,K ω′ iff ω ∈ [KC . C ′]C
′
. Therefore, from the definition of

�C,K, we have the following properties:

• If [KC . C ′]C
′
= {ω}, then ω �C,K ω′, but ω′ 6�C,K ω.

• If [KC . C ′]C
′
= {ω′}, then ω′ �C,K ω, but ω 6�C,K ω′.

• If [KC . C ′]C
′
= {ω, ω′}, then ω �C,K ω′ and ω′ �C,K ω.

It is not difficult to verify that when . is given, �C,K is a total preorder on W . In fact, from the

above we can see that (R ∗ 2) induces �C,K is reflexive and total. In addition, (R ∗ 5) shows that

�C,K is transitive, which can be seen by setting C1 = {ω1}, C2 = {ω2}, and C3 = {ω3}. Moreover,

according to (R ∗ 3) and (R ∗ 4), by setting C ′ = {ω, ω′}, if ω ∈ [KC ]C then we actually have

[KC . C ′]C
′
= [KC ]C ∩ C ′. Thus if ω′ ∈ [KC ]C , then ω ∼ ω′; if ω′ /∈ [K]C , then ω ≺ ω′. Hence �C,K

is faithful at [KC ]C .

Then, we only need to show that [KC . C ′]C
′

is exactly the set of minimal worlds of C ′ w.r.t.

�C,K. It is clear that when C ′ only contains one or two worlds, the revision result is exactly

the minimal worlds of C ′. This is because, the revision result should be consistent under C ′ by

(R ∗ 2), and thus the set of worlds of the result is contained in C ′: if C ′ only consists of one world,

then the set consists of this single world, which is of course minimal under �C,K; if C ′ consists

of two worlds, then by the above definition of �C,K, the set still consists of the minimal worlds

under �C,K.

Next we show that this is also true for C ′ consisting of more than two worlds by induction.

We use ‖C ′‖ to represent the number of elements in C ′. Suppose [KC . C ′]C
′
= min(C ′,�C,K)

is satisfied when ‖C ′‖ ≤ k, where k ∈N and k ≥ 2. We need to show that the equation is also

satisfied when ‖C ′‖= k + 1. Suppose C ′ = {ω1, ω2, · · · , ωk+1}. We finish the proof by considering

the following two cases.

Case 1. If there are ωi, ωj ∈ C ′ such that ωi ≺C,K ωj , then let C2 = {ωi}, C3 = {ωj} and we

have KC . (C2 ∪ C3) =KC . C2. Let C1 = C ′ \ (C2 ∪ C3), then we have KC . C ′ =KC .
(C1 ∪ C2 ∪ C3) =KC . (C1 ∪ C2) by (R ∗ 6). Since ‖C1 ∪ C2‖= k, we have [KC . (C1 ∪
C2)]C1∪C2 = min(C1 ∪ C2,�C,K). From ωi ≺C,K ωj , we have min(C ′,�C,K) = min(C1 ∪
C2,�C,K). Therefore, [KC . C ′]C

′
= min(C ′,�C,K).
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Case 2. If for all ωi, ωj ∈ C ′, we have ωi ∼C,K ωj , then min(C ′,�C,K) = C ′, i.e., every world in C ′

is minimal. We need to show [KC . C ′]C
′
= C ′. Suppose by contradiction [KC . C ′]C

′ 6=
C ′. Denote by U = [KC . C ′]C

′
. Then U ⊂ C ′ and hence ‖U‖ ≤ k.

• If ‖U‖< k, then let C1 = U and C2 = {ωj} where ωj is randomly selected from

C ′ \ U . Therefore we have KC . (C1 ∪ C2) =KC . C1 by (R ∗ 7). Since ‖C1‖< k,

we have [KC . C1]C1 = C1. Hence, [KC . (C1 ∪ C2)]C1∪C2 = C1. However, by ‖C1 ∪
C2‖ ≤ k, we have [KC . (C1 ∪ C2)]C1∪C2 = min(C1 ∪ C2,�C,K) = C1 ∪ C2. This is a

contradiction.

• If ‖U‖= k, then we can randomly select some ωi ∈ U and let C1 = U \ {ωi},
C2 = {ωi}, and C3 = C ′ \ U . Noticing that k ≥ 2, we know C1 6= ∅. We always

have KC . (C1 ∪ C2 ∪ C3) =KC . (C1 ∪ C2). However, by induction hypothesis,

KC . (C1 ∪ C3) = min(C1 ∪ C3,�C,K) = C1 ∪ C3, and KC . C1 = min(C1,�C,K) =

C1. Thus KC . (C1 ∪ C3) 6=KC . C1. Similarly, we have KC . (C2 ∪ C3) 6=KC . C2.

This is a contradiction to (R ∗ 6) by KC . (C1 ∪ C2 ∪ C3) =KC . (C1 ∪ C2).

Therefore, we also have [KC . C ′]C
′
= min(C ′,�C,K) in this case.

2

Example 4 For the case considered in Example 3, where KC = CnC({p ∧ ¬q}), C = {p ∧
¬q, ¬p ∧ ¬q}, and C ′ = {¬p ∧ q, ¬p ∧ ¬q}, to define an operator . satisfying (R ∗ 1)-(R ∗ 7)

and giving the result with the world ¬p ∧ q, we can construct a mapping f : (C,KC) 7→�C,K
that is faithful at [KC ]C , and for KC = CnC({p ∧ ¬q}), �C,K is that p ∧ ¬q ≺C,K ¬p ∧ q ≺C,K
¬p ∧ ¬q ≺C,K p ∧ q. The revision result is actually [KC . C ′]C

′
= min(C ′,�C,K) = {¬p ∧ q}.

Example 5 An instance of . can also be induced by some pseudo-distance. We can define .d
by using the pseudo-distance d defined in Equation (3) as follows:

[KC .d C ′]C
′
= {ω ∈ C ′ | ∀ω′ ∈ C ′, d(ω, [KC ]C)≤ d(ω′, [KC ]C)}. (4)

Consider the situation in Example 3. The current restriction is C = {p ∧ ¬q, ¬p ∧ ¬q}, the

current belief set is KC = CnC({p ∧ ¬q}), and the new restriction is C ′ = {¬p ∧ q, ¬p ∧ ¬q}.
Let ω1, ω2, ω3, ω4 correspond to p ∧ q, p ∧ ¬q, ¬p ∧ q, ¬p ∧ ¬q respectively. If the pseudo-

distance d is defined as the Hamming’s distance between the formulas, e.g., d(ω1, ω2) = 1 and

d(ω1, ω4) = 2, then as [KC ]C = {p ∧ ¬q}= {ω2}, [KC .d C ′]C
′
= {ω ∈ C ′ | ∀ω′ ∈ C ′, d(ω, [KC ]C)≤

d(ω′, [KC ]C)}= {¬p ∧ ¬q}. If the pseudo-distance d is defined in another way s.t. d(ω3, ω2) = 1

and d(ω4, ω2) = 2, then [KC .d C ′]C
′
= {¬p ∧ q}.

Proposition 2 For any pseudo-distance d on W , the mapping .d given in Equation (4)

satisfies (R ∗ 1)-(R ∗ 7).

Proof Given a belief set KC under C, for each ω, ω′ ∈W , we define ω � ω′ if d(ω, [KC ]C)≤
d(ω′, [KC ]C). Then it is clear that � is a total preorder. For each ω ∈ [KC ]C , we have

d(ω, [KC ]C) = 0. Also note that ∀ω′ 6= ω, d(ω, ω′)> 0. Therefore � is faithful at [KC ]C . Moreover,

by the definition of KC .d C ′ in (4), we have KC .d C ′ = min(C ′,�). By Theorem 3, .d satisfies

(R ∗ 1)-(R ∗ 7). 2

Remark 3 Revising beliefs when the restriction changes is essentially different from revising

beliefs under a fixed restriction, because the latter only needs to determine the preference of

worlds on C, while the former needs to determine the preference of worlds in W .

In summary, we have proposed a generic framework for belief revision under either fixed or

dynamic restrictions. Particularly, this framework characterises how to revise the current belief
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set of an agent with new evidence, under a fixed restriction; it also considers how the current

belief set should be adapted accordingly in the case when the restriction changes.

In the following, we discuss an application of this framework to belief revision of qualitative

spatio-temporal information.

4 Belief Revision of Qualitative Constraints

Beliefs in terms of qualitative spatio-temporal information have been observed in various

areas, such as planning (e.g. (Liu & Daneshmend 2004)), geographical information science (e.g.

(Egenhofer & Mark 1995)), and computer vision (e.g. (Fernyhough et al. 2000)), as well as our

daily life. For example, an agent might have the belief “cinema A is to the south of parking lot

B”. Several works have considered merging or revision of qualitative spatio-temporal information,

e.g. (Condotta et al. 2008, 2009b,a, Wallgrün & Dylla 2010, Hue & Westphal 2012, Dufour-Lussier

et al. 2012, 2014). However, none of them formally recognized the effects of restrictions. Therefore,

in the sequel, we consider the application of the proposed framework of belief revision under

restrictions to qualitative spatio-temporal information.

Qualitative spatio-temporal information is usually represented as a qualitative constraint

network (QCN), defined as follows:

Definition 9 A QCN is a tuple (V, C), where V is a set of variables {v1, . . . , vn}, each

corresponding to a spatial or temporal entity, and C is a mapping V × V → 2R that associates

a constraint Rij ⊆R with each pair of variables vi, vj ∈ V , where R is a predefined set of atomic

relations (or simply atoms) (Ligozat & Renz 2004).

Intuitively, a QCN can be seen as a set of constraints, where each constraint is in the form of

(viRijvj), and Rij is called a qualitative relation between vj and vj . There are many choices of

qualitative calculi and, by extension, qualitative relations. As illustration, Point Algebra (Vilain

& Kautz 1986) provides qualitative relations Rij ⊆ {precedes (<), equals (=), follows (>)} on the

domain of rational numbers. In particular, considering the points on the line of rational numbers

and the usual ordering relation <, the three atomic relations of Point Algebra are defined in the

following manner: precedes (<) = {(x, y) ∈Q×Q | x < y}, follows (>) = {(x, y) ∈Q×Q | y < x},
and equals (=) = {(x, y) ∈Q×Q | x= y}. These atomic relations comprise the set R for Point

Algebra, and based on that set we can define eight qualitative relations of Point Algebra in total

that correspond to the set 2R = {{<,=, >}, {<, >}, {<,=}, {=, >}, {<}, {>}, {=}, ∅}. As

an example, relation {<, >} allows us to represent the knowledge that an event occurs before

or after another event, but not at the same time. Further, two events x, y ∈Q satisfy relation

{<, >} if and only if x 6= y. As another example, N = {(v1 ≤ v2), (v2 < v3), (v1 = v3)} is a QCN

over Point Algebra on the variables V = {v1, v2, v3}, where ≤ is short for the relation {<,=}.
For a constraint (viRijvj), following (Pham et al. 2006), one can encode it as a logic formula∨
r∈Rij

rij , e.g., (v1 ≤ v2) can be encoded as <12 ∨=12. A world in this language corresponds to a

qualitative scenario, which is a QCN where each pair of variables are related by an atomic relation

(e.g., the relations {<}, {=}, and {>}). Note that not all qualitative scenarios are satisfiable. For

example, the QCN {(v1 < v2), (v2 < v3), (v1 = v3)} is a qualitative scenario but it is not satisfiable,

as, based on (v1 < v2) and (v2 < v3) for example, the value of v1 should always be smaller than

the value of v3. Therefore, a natural restriction for belief revision of qualitative spatio-temporal

information is the set of worlds that correspond to satisfiable qualitative scenarios. A belief set

under such restriction then corresponds to a set of satisfiable qualitative scenarios.

In fact, the above settings have been adopted in (Dufour-Lussier et al. 2012, Hue & Westphal

2012) for belief revision of qualitative spatio-temporal information. They performed belief revision

implicitly under the natural restriction corresponding to satisfiable scenarios, by using an instance

of the general revision operator ?d defined in Equation (2) as [K ?d ϕ]C = {ω ∈ [ϕ]C | ∀ω′ ∈
[ϕ]C , d(ω, [K]C)≤ d(ω′, [K]C)}. The framework proposed here is more general as one can choose
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restrictions other than the natural one. Let us illustrate this on QCNs over Point Algebra for

three variables.

Example 6 Consider the QCN N1 = {(v1 ≤ v2), (v2 ≤ v3), (v1 ≤ v3)} (see Fig. 1(a)). In the

situation of manufacturing, this could mean the product A1 shouldn’t be manufactured after

the product A2 (v1 ≤ v2), the product A2 shouldn’t be manufactured after the product A3 (v2 ≤
v3) and the product A1 shouldn’t be manufactured after the product A3 (v1 ≤ v3). Suppose

the restriction says that “not all variables are equal” (and the qualitative scenarios should be

satisfiable). For manufacturing, this could correspond to the restriction that “not all the products

can be manufactured at the same time” (probably because of limit of resources). Then the

restriction C is the set of worlds corresponding to the satisfiable scenarios over Point Algebra

except the one {=12 ∧=23 ∧=13}. Let K be the belief set representing the QCN N1 , i.e., [K]C

is

{<12 ∧<23 ∧<13, <12 ∧=23 ∧<13,=12 ∧<23 ∧<13}.

(a) N1 (b) N2
(c) N ?

12

Figure 1: Revision of N1 by N2 under C, resulting in N ?
12.

Suppose we have a new evidence ϕ2
.
=≥12 ∧(<23 ∨=23 ∨>23)∧ ≥13, i.e. we now have (v1 ≥

v2) and (v1 ≥ v3). For manufacturing, this could be a suggestion from some expert saying that

“product A1 should not be manufactured before A2 or A3”. Fig. 1(b) illustrates the corresponding

QCN N2 of ϕ2. Then [ϕ2]C is

{>12 ∧<23 ∧>13, >12 ∧<23 ∧=13, >12 ∧=23 ∧>13,

>12 ∧>23 ∧>13,=12 ∧>23 ∧>13}.

In order to revise K by ϕ2, we exploit the operator ?d defined in Definition 8 which

satisfies the postulates for revision under restriction (C ∗ 1)-(C ∗ 8). Following (Condotta et al.

2009b), the distance between worlds is defined as the conceptual neighbourhood distance between

corresponding scenarios. The conceptual neighbourhood distance between relations characterises

“conceptual similarities” of relations. For example, < is a conceptual neighbour of =, because

for two variables representing numbers, by continuously changing the values of them can lead

the relation between them to change from < to = or vice versa, without becoming any other

relations during the process. Then the conceptual neighbourhood distance between two scenarios

can be defined as d(ω1, ω2) =
∑
i<j d(r1ij , r

2
ij), where for Point Algebra d(<,=) = d(>,=) = 1

and d(<, >) = 2. Let ω1
.
=>12 ∧<23 ∧>13, ω2

.
=>12 ∧<23 ∧=13, ω3

.
=>12 ∧=23 ∧>13, ω4

.
=>12
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∧>23 ∧>13, ω5
.
==12 ∧>23 ∧>13. Then∑

ω∈[K]C

d(ω1, ω) = (2 + 0 + 2) + (1 + 0 + 2) = 7;

∑
ω∈[K]C

d(ω2, ω) = (2 + 0 + 1) + (1 + 0 + 1) = 5

∑
ω∈[K]C

d(ω3, ω) = (2 + 1 + 2) + (1 + 1 + 2) = 9;

∑
ω∈[K]C

d(ω4, ω) = (2 + 2 + 2) + (1 + 2 + 2) = 11;

∑
ω∈[K]C

d(ω5, ω) = (1 + 2 + 2) + (0 + 2 + 2) = 9.

Therefore, we have [K ?d ϕ2]C = {>12 ∧<23 ∧=13}. For manufacturing, it means “product A2

should be manufactured before A1 and A3, and product A1 and A3 should be manufactured at

the same time”. Note that without the restriction C, the appropriate result would be “products

A1, A2, A3 should be manufactured at the same time”, i.e. =12 ∧=23 ∧=13. However, with the

restriction C, we obtained a result that is the most appropriate one satisfying C. The result

corresponds to the QCN N ?
12 as shown in Fig. 1(c).

Note that in the above example, the restriction C not only requires that the scenarios are

consistent but also excludes some consistent scenarios. This setting is more general than the

revision of qualitative spatio-temporal information considered in (Dufour-Lussier et al. 2012,

Hue & Westphal 2012).

Moreover, the framework of belief revision under restrictions is even more general in the

sense that one can revise beliefs of qualitative spatio-temporal information accordingly when the

restriction changes; we illustrate the process in the example below.

(a) N3 (b) N4

Figure 2: Revision of N3 when the restriction is changed, resulting in N4.

Example 7 Suppose the current restriction C says that “in any case, the relation between

v2 and v3 cannot be {=} (and the scenarios should still be satisfiable)”, i.e. C consists of all the

(consistent) worlds that do not contain =23.

Then suppose we get a new restriction C ′ saying that “the relation between v2 and v3 can

only be {>} or {=} (and the scenarios should still be satisfiable)”, i.e., C ′ is

{<12 ∧=23 ∧<13, <12 ∧>23 ∧<13, <12 ∧>23 ∧=13,

<12 ∧>23 ∧>13,=12 ∧=23 ∧=13,=12 ∧>23 ∧>13,

>12 ∧=23 ∧>13, >12 ∧>23 ∧>13}.

Consider N3 shown in Fig. 2(a). Let the belief set under C corresponding to N3 be KC . Then

[KC ]C = {<12 ∧<23 ∧<13,=12 ∧<23 ∧<13}.
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Figure 3: The atomic relations of RCC8, with ·i denoting the converse of ·

We make use of the operator .d defined in (4) and the conceptual neighbourhood distance,

while actually any operator satisfying (R ∗ 1)-(R ∗ 7) can be used. Then we have [KC .d C ′]C
′
=

{<12 ∧=23 ∧<13}. The corresponding QCN N4 is shown in Fig. 2(b). Comparing N4 with N3,

we can see that the relation between v2 and v3 is changed from {<} to {=} because the new

restriction requires that the relation between v2 and v3 should be either {>} or {=}, and the

relation between v1 and v2 is changed from {<,=} to {<} accordingly such that the scenarios

included in the result are satisfiable.

Remark 4 From the above example, we can see that changing restriction is not the same as

revision by considering the new restriction as a new evidence, like also stated earlier in Remark 3.

This is because, if we consider C ′ as a new evidence ϕC′ and revise KC under the restriction C,

then [KC ?d ϕC′ ]C = {<12 ∧>23 ∧<13}, which is not the same as [K .d C ′]C
′
.

Our aforementioned setting concerning Point Algebra naturally extends to more complex

calculi too. We can consider for instance the Region Connection Calculus (RCC), which is a first-

order theory for representing and reasoning about mereotopological information (Randell et al.

1992). The domain of RCC comprises all possible non-empty regular subsets of some topological

space. A fragment of RCC, called RCC8, makes use of the topological relations disconnected

(DC), externally connected (EC), equal (EQ), partially overlapping (PO), tangential proper part

(TPP ), tangential proper part inverse (TPPi), non-tangential proper part (NTPP ), and non-

tangential proper part inverse (NTPPi) to encode knowledge about the spatial relations between

regions in some topological space. These spatial relations constitute the set of atomic relations

R= {EQ, DC, EC, PO, TPP , TPPi, NTPP , NTPPi} for RCC8, where each atomic relation

of RCC8 represents a particular topological configuration of two regions in some topological space.

The atomic relations of RCC8 are depicted in Figure 3.

We argue that belief revision under restrictions in the context of RCC8 and its derivatives

is relevant to various diverse research areas, such as image analysis (Randell et al. 2017), smart

environments (Sioutis et al. 2017), and neuro-symbolic reasoning (Alirezaie et al. 2019); we explain

as follows. In (Randell et al. 2017) the authors consider an approach to programmatically correct
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image segmentation errors that fail to fulfil expected spatial relations in digitised histological

scenes. The approach comprises sequences of operations that are applied to regions of a given

spatial relation, and enables one to resegment an image that fails to conform to a valid histological

model into one that does. As an example, by default RCC8 allows any configuration (any consistent

relations) between regions. However, in medical images various restrictions are entailed, such as

the fact that cell nuclei must form parts of their host cells. Due to regions initially segmented

out as cell nuclei being over-segmented, or variations in the histological stain density resulting

in a less than optimal threshold level being selected, it may so happen that during the image

segmentation process a segmented cell nucleus appears to extend outside the border of its host cell,

which is medically impossible. The task then is to revise the segmentation to restore consistency

and/or optimise the sequence of segmentation steps needed. To the best of our knowledge, so far

this issue has been tackled in an ad hoc manner that pertains to the particulars of the domain

under study (in the case of (Randell et al. 2017), the medical domain, with tailored sequences of

operations), and there does not exist a generic framework for formally revising such knowledge

under a set of restrictions. For illustration, consider Figure 4 about the revision of beliefs about

cell image segmentation. The original image of two cells is shown in (a), and one could have many

possible segmentation results if cells and nuclei are segmented independently, which is common

in practice (Randell et al. 2017). Some reasonable segmentation results would have the cell on the

left (c1) smaller than the cell on the right (c2) and c1 and c2 not being disjoint. Let us consider

this as our beliefs, which can be represented as a QCN N in (b) where R is the set of RCC8 atomic

relations and n1 and n2 are nuclei for c1 and c2, respectively. It can be verified that every relation

in N can be satisfied in some spatial configurations, which means that this QCN is perfectly fine

in terms of consistency of the spatio-temporal knowledge base. However, in the medical domain,

cell nuclei must be proper part of their host cells, i.e. n1NTPPc1 and n2NTPPc2 should act as

the restriction C (we can consider that initially there was no restriction, so there is a change of

restrictions). N , which corresponds to a set of beliefs as mentioned earlier, would be revised to

NC as shown in (c). Another circumstance is that there is a new evidence, saying that two cells

should not overlap each other, which can be represented as ϕ in (d) and it is actually ϕC in (e)

when there is a restriction C as before. Then with the proposed framework, the beliefs will be

revised to N ′ and finally segmentation results like (g) will be considered valid.

Similar circumstances happen in other domains. As noted in the beginning of this section, a

limitation of current spatio-temporal revision frameworks, e.g., (Condotta et al. 2008, 2009b,a,

Wallgrün & Dylla 2010, Hue & Westphal 2012, Dufour-Lussier et al. 2012, 2014), is that revision

of spatio-temporal information occurs unrestrictedly, or, to be exact, under the sole restriction

that the end result maintains consistency of the spatio-temporal knowledge base. However, as

noted in (Sioutis et al. 2017), where smart environment applications are discussed, this is hardly

a realistic case. The output of sensors that yield spatial or temporal knowledge might need to

be restricted/filtered based on their location and/or the type of information that they provide.

For example, it is impossible for a single subject to be present in two separate rooms, but this

restriction may be revised if the subject is visited by someone. Finally, in (Alirezaie et al. 2019) an

RCC8 reasoner is employed to provide feedback and act as a referee upon a classifier, restricting

certain impossibilities like water appearing where a shadow exists instead. In the future directions

of that work the authors express the will to explore the reverse process, namely, the intention

to use the classifier in order to enhance the capabilities of the reasoner, which would definitely

require the reasoner to be extended with revision under (dynamic) restriction techniques.

5 Related Work

To the best of our knowledge, the most closely related research on restrictions is about “integrity

constraints”. Revision under integrity constraints has received attention in several previous

works (Grüne-Yanoff & Hansson 2009, Katsuno & Mendelzon 1991) (see also references therein).

In particular, Katsuno and Mendelzon (Katsuno & Mendelzon 1991) defined operators for revision
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(a) cell image

(b) N (c) NC

(d) ϕ (e) ϕC

(f) N ′
(g) segmentation

Figure 4: Revision of N1 by N2 under C, resulting in N ?
12.

under some integrity constraints. An integrity constraint is a propositional formula that is

invariant upon revision, and is always implied by the current belief of the agent. Revision

under an integrity constraint IC is defined as K ◦IC ϕ≡K ◦ (µ ∧ IC), and has several substantial

differences from revision under restrictions. We explain as follows.

First, as illustrated in Remark 1, the operator ◦IC is not an AGM operator, whereas postulates

to characterise rationality of it are not given in (Katsuno & Mendelzon 1991). Also, the situation

where integrity constraints might change is excluded from discussion in (Katsuno & Mendelzon

1991). Moreover, this operator differs from what was defined in this paper for fixed restrictions.

Particularly, in this paper, the revision operator ? under fixed restrictions C can be seen as

K ? µ≡ (K ∧ C) ◦ (µ ∧ C). Note that here we abused ∧ to operate on sets of formulas to emphasize

the difference, where K ∧ C and µ ∧ C actually mean Cn(K ∧ γ) and µ ∧ γ respectively, and

γ = Form(C) is a formula whose worlds are exactly those in C (cf. Remark 1). The two

operators are essentially different, which can be seen from the following example. Consider K
being the belief set having worlds {ω1, ω2}, the new evidence µ having worlds {ω3, ω4, ω5}, and

the restriction (integrity constraint) C = {ω1, ω3, ω4} (see Figure 5 for illustration). Suppose

we know the following distances d(ω3, ω1) = 1, d(ω3, ω2) = 5, d(ω4, ω1) = 2, d(ω4, ω2) = 2. Then

d(ω3,K) = 6 and d(ω4,K) = 4, following the definition of distance between a world and a belief

set in Equation (3). Since µ ∧ C has the set of worlds {ω3, ω4}, and ω4 is closer to K than ω3, we

have that K ◦ (µ ∧ C) contains world ω4. However, (K ∧ C) ◦ (µ ∧ C) contains world ω3 instead,

as K ∧ C only has world ω1 and ω3 is closer to ω1 than ω4. This illustrates that the revision

operator defined in (Katsuno & Mendelzon 1991) is different from what is defined in this paper.

The reason for this difference is because in our framework we discuss revision under a modified
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Figure 5: An example illustrating the difference between revision under restriction and integrity

constraints.

language where beliefs can only contain worlds from the restriction, whereas in (Katsuno &

Mendelzon 1991) the discussion is still under the full language.

Integrity constraints are also discussed in the context of merging (Lin & Mendelzon 1996, Qi

et al. 2006, Konieczny & Pérez 2002, Konieczny et al. 2011). In (Konieczny & Pérez 2002, Lin &

Mendelzon 1996), the authors showed that a merging operator (called an IC merging operator)

satisfying those rational postulates can induce an AGM revision operator. In fact, by restricting

merging to only one belief set K, and taking the integrity constraint as the new evidence µ, an

IC merging operator δµ can naturally induce an AGM revision operator: K ◦ µ= δµ(K). This

is also discussed in (Konieczny et al. 2011). However, this induced operator ◦ is not a revision

operator under restriction: the integrity constraints in merging become the new evidence, and

for revision with this induced operator, there is no restriction at all. It is also worth noting that

all the previous works on revision or merging with integrity constraints did not consider how the

current belief set would be affected when integrity constraints change, which corresponds to the

case of dynamic restrictions in this article.

Non-prioritized belief revision is another related extension of traditional belief revision, which

allows new evidence to be rejected based on some criteria. For example, in (Booth et al. 2012,

Hansson et al. 2001), they equip each belief set with a set of credible formulas, and the new

evidence is accepted only if it is one of the credible formulas. In other words, for each belief set K,

there is some restriction C, and it requires that [K]⊆ C. This is a special case of our consideration,

where we can have [K] 6⊆ C. This difference can lead to different revision capabilities, e.g., when

[K] = {ω1, ω2}, with credibility-limited revision, one can only deal with cases where the restriction

C contains {ω1, ω2}, while with our framework, we can also deal with cases where [K] 6⊆ C, e.g.,

C = {ω2, ω3}. Moreover, for the case where the new evidence is not compatible with the restriction

(i.e. when the new evidence is not consistent under the restriction), credibility-limited revision

simply does not revise the current belief, whereas we follow AGM tradition to revise the current

belief to include everything from C. A similar non-prioritized revision framework is also considered

in (Booth 2002) in terms of core beliefs, where new evidence would also be rejected if it contradicts

with core beliefs. It further considers the revision of core beliefs when new evidence comes, which

is different from our revision under dynamic restrictions, as we consider changes of beliefs when

a restriction changes.

Yet another important extension of the AGM framework is iterated belief revision (Darwiche

& Pearl 1997). The main difference between these two theories is that the latter further considers

rationality of revision in a continuous manner, while the former only considers revision in a one-

step way. The proposed framework here can also be extended to iterated revision similarly by

adding rational postulates to characterise continuous revision, but this is left for future work.

For example, Darwiche & Pearl (1997) argue that the total preorder in the revision result should

contain necessary information from the original belief. The proposed framework here could also

take this into consideration to extend to iterated belief revision. There are several other different
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directions on iterated revision, e.g., (Jin & Thielscher 2007, Ma et al. 2015, Konieczny & Pérez

2000, Papini 2001, Boutilier 1996), which could be also considered for extending our framework.

6 Conclusion

In this article, we considered an important problem in belief revision regarding applications.

Particularly, we noticed that, in practice, the beliefs of agents are not only logic formulas that

are syntactically consistent, but also formulas that should be semantically acceptable for specific

applications. Restrictions in applications essentially determine which formulas are semantically

acceptable. In order to enable belief revision to deal with restrictions, we proposed a generic

framework for changing beliefs under either fixed or dynamic restrictions. For this framework, we

formulated several postulates that characterise how to revise beliefs when new evidence arrives

or restrictions change. Moreover, we showed that there are representation theorems that confirm

the equivalence of belief revision and choosing minimal worlds w.r.t. some total preorder. Belief

revision of qualitative spatio-temporal information is discussed as an application example of this

framework. In the future, we will consider more general settings of belief change under restrictions.
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