
Semi-supervised clustering guided by pairwise constraints and local1

density structures⋆2

Zhiguo Longa,c, Yang Gaoa, Hua Mengb, Yuxu Chend,∗, Hui Koud3

aSchool of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu, 611756, China4
bSchool of Mathematics, Southwest Jiaotong University, Chengdu, 611756, China5

cEngineering Research Center of Sustainable Urban Intelligent Transportation, Ministry of Education,6

Chengdu, 611756, China7
dSchool of Mathematics, Sichuan University, Chengdu, 610014, China8

Abstract9

Clustering based on local density peaks and graph cut (LDP-SC) is one of the state-of-the-

art algorithms in unsupervised clustering, which first divides the data set to be multiple local

trees, and then aggregates these local trees to obtain the final clustering result. However,

for complex data sets, there might exist data points from different classes in the same local

tree. In this article, we use pairwise constraint information to resolve this issue and propose

a semi-supervised local density peaks and graph cut based clustering algorithm (SLDPC).

In particular, SLDPC proposes intra-cluster conflict resolution and inter-cluster conflict

resolution steps to split the local trees which are inconsistent with the provided pairwise

constraint information. Theoretically, we show that the two steps will finish in a finite

number of operations and the split local trees will be consistent with the pairwise constraint

information. Subsequently, root node redirection and noise filtering steps are designed to

avoid the local trees becoming too fragmented. Finally, we exploit the E2CP algorithm

to further improve the similarity matrix between local trees using the pairwise constraint

information, and the spectral clustering algorithm is adopted to obtain the clustering result.

Experiments on multiple widely used synthetic and real-world data sets show that SLDPC

is superior to LDP-SC and several other semi-supervised prominent clustering algorithms

for most of the cases.
Keywords: semi-supervised clustering, local density peaks, pairwise constraint10

propagation, inter-cluster conflict resolution11

1

1. Introduction12

Clustering [1] is the process of dividing a data set into multiple disjoint subsets while13

maximizing similarity within each subset and minimizing similarity between subsets [2,14

3]. It is an important branch in the field of data mining and machine learning and has15

been widely used in scientific research and engineering applications [4, 5, 6] such as image16

segmentation [7], community discovery [8, 9] and environmental analysis [10].17

Clustering by fast search and find of density peaks (DPC) [11, 12] is a widely used clus-18

tering algorithm based on density peaks, which performs well in clustering local structures.19

However, it has drawbacks in global clustering such as it cannot effectively deal with data20

sets with different densities in different parts and it is difficult to use Euclidean distance to21

fully exploit the manifold structure of the data. Spectrum clustering (SC) [13] is a graph cut22

clustering algorithm based on the similarity matrix. It is effective in the overall structural23

division but has shortcomings such as insufficient utilization of local information, imprac-24

ticality for data sets with significant differences in point numbers between clusters, and25

sensitivity to changes in similarity measures and clustering parameter selection. Clustering26

based on local density peaks and graph cut (LDP-SC) [14] combines the advantages of DPC27

and SC, which first uses DPC to establish trees (called family trees) in local areas, and28

then uses the improved graph cut algorithm to aggregate these local trees to complete the29

clustering, thus taking into account both local and global information.30

Although previous results have shown the superiority of LDP-SC over other similar31

methods, the construction of the family trees may lead to clustering errors on some complex32

data sets as shown in Figure 1, which displays the clustering results of LDP-SC and ground-33

truth clusters on the Compound and Pathbased data sets. For the Compound data set,34

at the stage of building family trees, LDP-SC makes mistakes for close clusters that have35

⋆Accepted version. Formal version available at: https://doi.org/10.1016/j.patcog.2024.110751
∗Corresponding author.
Email address: yuxuchen1210@sina.com (Yuxu Chen)

Preprint submitted to Elsevier July 16, 2024

https://doi.org/10.1016/j.patcog.2024.110751

significant differences in densities. The reason is that the high-density cluster is surrounded36

by the low-density cluster, and the principle of LDP-SC (and DPC variants) that “points37

with higher density and closest distance as the parent node” is no longer applicable in38

this case. The mistakes make it impossible to obtain desirable results for subsequent tree39

clustering. On the other hand, for the Pathbased data set, LDP-SC is basically correct40

in the stage of building family trees. However, due to the complex data distribution, the41

banded cluster is cut into pieces during the graph cut process, which again results in poor42

performance of clustering.43

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Family Trees

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Result

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Ground Truth

1.5 1.0 0.5 0.0 0.5 1.0 1.5

2

1

0

1

2

Family Trees

1.5 1.0 0.5 0.0 0.5 1.0 1.5

2

1

0

1

2

Result

1.5 1.0 0.5 0.0 0.5 1.0 1.5

2

1

0

1

2

Ground Truth

Figure 1: Problems of LDP-SC on Compound and Pathbased.

To solve these problems, a common method is to use semi-supervised learning [15], which44

utilizes a small amount of auxiliary information to help the algorithm to make decisions.45

In this article, we propose a semi-supervised local density peaks and graph cut based al-46

gorithm (SLDPC) builds on LDP-SC. SLDPC utilizes semi-supervised information in the47

form of pairwise constraints (i.e., must-links and cannot-links) and designs intra-cluster con-48

3

flict resolution and inter-cluster conflict resolution steps to split and reorganize local trees.49

The two steps ensure that the constructed local trees are consistent with given constraint50

information, effectively preventing errors and ultimately enhancing the purity of the trees.51

Subsequently, two post-processing steps, i.e., root node redirection and noise filtering, are52

designed to avoid the family trees being too fragmented. Additionally, in the clustering53

step, SLDPC combines the classical pairwise constraint propagation algorithm E2CP [16]54

to further optimize the similarity matrix between trees, therefore improving the result of55

aggregating trees and thus of clustering.56

The main contributions of this article are:57

1. We proposed a semi-supervised version of LDP-SC. By utilizing semi-supervised in-58

formation, we design intra-cluster conflict resolution, inter-cluster conflict resolution,59

root node redirection and noise filtering steps to improve the purity of local trees while60

avoiding them being fragmented.61

2. We integrate the E2CP algorithm to optimize the similarity measure between local62

trees to make it more consistent with the given constraint information.63

3. We validate the effectiveness of SLDPC experimentally on two synthetic data sets and64

twelve real-world data sets. The results show its superiority over several prominent65

baseline algorithms, including LDP-SC.66

2. Related Work67

In recent years, numerous semi-supervised clustering algorithms have been proposed68

and implemented in various scenarios. These algorithms can be mainly classified into two69

categories: those based on label information and those based on pairwise constraints.70

2.1. Semi-supervised clustering based on label information71

The most intuitive way to add supervision information is to directly give the labels of72

some samples. Basu et al. [17] regarded the provided labeled data as “seeds” and proposed73

the Seeded-KMeans and Constrained-KMeans algorithms. These algorithms choose the74

4

initial points of KMeans from the seed set to ensure the correctness of initial points, instead of75

randomly selecting from the whole data set. In the Constrained-KMeans algorithm, the label76

information of “seeds” will not be changed with the iteration of KMeans, which ensures that77

the final result does not violate the supervision information. PLCC [18] uses “category utility78

function” [19] as a regularization term in the loss function of KMeans or spectral clustering to79

improve the consistency between label values and given constraints in the objective function.80

SMKFC-ER [20] is proposed from the perspective of entropy and relative entropy. In this81

algorithm, the objective function is divided into a supervised part and an unsupervised part.82

Entropy coefficient and relative entropy divergence measure are applied rather than fuzzifier83

for the unsupervised part and the geometric distance measure for the semi-supervised part84

respectively. CSSC [21] is proposed based on the assumption that the cluster is compact,85

i.e., without low-density separation. It uses a top-down approach to iteratively refine the86

results of traditional clustering algorithms until each cluster is compact enough. CSSC87

is integrated into conventional clustering algorithms, leading to the emergence of CSSC-88

KMeans and CSSC-SC algorithms.89

2.2. Semi-supervised clustering based on pairwise constraints90

Pairwise constraint information is weaker than label information. The pairwise con-91

straints are composed of must-link and cannot-link relations. The former indicates that two92

points belong to the same category, while the latter indicates that they belong to different93

classes. Obviously, label information can be converted into pairwise constraints, but not94

vice versa.95

Since pairwise constraints provide information between two data points, an intuitive idea96

is to utilize them to adjust the similarity between points. Kamvar et al. [22] used supervision97

information to optimize the similarity matrix in spectral clustering by directly setting the98

similarity between must-link pairs to 1 and the similarity between cannot-link pairs to 0.99

However, this algorithm only adjusts the similarity for points with constraint information,100

which is relatively limited. Hence, the idea of propagating the similarity between constraint101

pairs to all samples (constraint propagation) is developed [23]. Constraint propagation has102

5

also been described as a semi-definite programming (SDP) problem in [24]. To further utilize103

constraint information and overcome the high time complexity of SDP,104

E2CP algorithm [16] decomposes the constraint propagation problem into a set of inde-105

pendent semi-supervised classification sub-problems so that it can achieve excellent perfor-106

mance with lower time complexity.107

In the PCOG [25] framework, a pairwise constraint based regularization method is in-108

tegrated with their previous work [26]. This method ensures that the number of connected109

components (subgraphs) in a similar matrix is equal to the number of clusters while satis-110

fying that cannot-link pairs are in different connected components (must-link pairs are in111

the same component). SSFPC [27] incorporates constraint information as a regularization112

term into the objective function of fuzzy clustering and solves non-convex problems using113

an improved expectation-maximization algorithm.114

Taking advantage of the excellent performance of E2CP, ISSCE [28] is proposed for115

high-dimensional data clustering by combining clustering ensembles with random subspace116

techniques. It uses E2CP in different subspaces and obtains the final clustering result by a117

consensus function. In addition, based on the belief that members in the ensemble algorithm118

should have different contributions and not all constraints are useful, the DCECP [29] frame-119

work is proposed. The WECR k-means algorithm [30] uses random subspace and random120

sample techniques [31] to obtain base partitions, and then incorporates constraint informa-121

tion and Silhouette coefficient [32] to calculate similarity matrix for spectral clustering.122

To address potential conflicts between different types of constraints from different sources123

such as pairwise constraints and label information, and prior knowledge from different do-124

main experts, a multi-source fusion method is proposed and then the SC-MPI algorithm [33]125

based on spectral clustering is developed.126

3. Preliminaries127

3.1. LDP-SC128

LDP-SC [14] first builds family trees based on the density and neighbors of the data129

points, so that the points can be clustered locally, and then the family trees are aggregated130

6

according to the similarity to complete the clustering globally.131

For a data set X = {x1, x2, · · · , xN}, denote by KNN(xi) the set of k nearest neighbors132

of the data point xi (not including xi). The density of an arbitrary point is defined by:133

ρ(xi) =
k∑

j=1

exp(−dist2ij), (1)

where dist is a N × k matrix, and distij is the Euclidean distance between xi and its j-th

nearest neighbor. Then, the parent P (xi) of a data point xi is defined as follows:

P (xi) =

argmin

xj∈higher(xi)

distij, if higher(xi) ̸= ∅,

None, otherwise,

(2)

where higher(xi) = {xj|xj ∈ KNN(xi), ρ(xj) > ρ(xi)}. If xi has no parent (P (xi) = None),134

then xi is defined as a root. Each root and its descendants form a family tree.135

Definition 1. A family tree is a tree with some data points xi as its nodes, and has a136

directed edge (xi, xj) if xj = P (xi).137

For any root ri, we use T (ri) to refer to the family tree with ri as its root. For any point138

x, we denote by root(x) the root of the family tree that contains x. Next, the similarity139

between two family trees is decided together by the number of shared nearest neighbors, the140

separation measure and the distance between them.141

Definition 2. The similarity between T (ri) and T (rj) is defined to be

sim(T (ri), T (rj)) =
|SNN(T (ri), T (rj))|

(1 + σ(T (ri), T (rj))) · (1 + d(ri, rj))
, (3)

where, d(ri, rj) = ∥ri − rj∥2, SNN(T (ri), T (rj)) is the shared nearest neighbors of two trees,142

and σ(T (ri), T (rj)) is the separation between two trees (cf. [14]).143

The adjacency matrix W for the family trees of a data set is then calculated as Wij =144

sim(T (ri), T (rj)) and normalized by Wij = Wij/max(W). In order to maintain the connect-145

7

edness of the graph, a Gaussian kernel distance matrix Wij
′ = exp(−d(ri,rj)

2

2
) between roots146

is constructed, and W is updated to be W + θW ′, where θ is set to be a small value 0.001.147

To simplify notations, root r is used to represent the tree T (r) in the connection graph.148

Let T be the set of family trees (|T | = p), and set the number of target clusters to be C.149

LDP-SC adapts the Ncut loss function for family trees as follows:150

Ntcut (A1, . . . , AC) =
C∑
i=1

cut
(
Ai, Ai

)
vol (Ai) ·

∑
r∈Ai
|T (r)|

, (4)

where Ai = {ri1 , . . . , ris} is a set of family trees (
⋃

i Ai = T), vol(Ai) =
∑

ru∈Ai,rj∈T Wuj, and151

cut(Ai, Ai) = 1
2

∑
ru∈Ai,rv∈Ai

Wuv. Finally, by finding a solution that minimizes the above152

loss function, LDP-SC gets the clustering result. For the specific solution process, see [3, 14].153

3.2. E2CP154

E2CP is a semi-supervised clustering algorithm based on pairwise constraints. The155

main idea is to adjust the initial similarity matrix according to the pairwise constraint156

information such that the similarity between data points is more consistent with the actual157

label distribution. It can be divided into three steps: (1) Calculating the initial similarity158

matrix; (2) Adjusting the similarity matrix by means of pairwise constraints; (3) Clustering159

according to the adjusted similarity matrix.160

Given any data set X = {x1, x2, . . . , xm}, denote the pairwise constraints by M and C,161

where M and C represent must-link and cannot-link separately: (i, j) ∈ M means that xi162

and xj belong to the same class; (i, j) ∈ C means that xi and xj belong to different classes.163

M and C can be denoted as a constraint matrix Z = {zij}m×m as zij = +1 if (i, j) ∈ M,164

zij = −1 if (i, j) ∈ C, and zij = 0 otherwise.165

E2CP first calculate the original similarity matrix W = {wij}m×m as follows: if xi is166

the k nearest neighbor of xj (or vice versa), then define wij =
a(xi,xj)√

a(xi,xi)
√

a(xj ,xj)
; otherwise,167

define wij = 0. Usually set a(xi, xj) = exp(−∥xi − xj∥2 /t), where t is a hyper-parameter.168

And then set W = (W +W T)/2 to ensure the symmetry of the similarity matrix.169

Then the pairwise constraint propagation matrix, denoted by F = {fij}m×m, is calculated

8

by the following closed-form solution [34]:

F ∗ = (1− α)2(I − αL)−1Z(I − αL)−1. (5)

After calculating F ∗, set f̃ ∗
ij = f ∗

ij/maxi′,j′
∣∣f ∗

i′j′

∣∣ to get a normalized matrix F̃ ∗. Then,

use F̃ ∗ to adjust the original similarity matrix W in the following way:

w̃ij =

1−
(
1− f̃ ∗

ij

)
(1− wij) , f̃ ∗

ij ≥ 0;(
1 + f̃ ∗

ij

)
wij, f̃ ∗

ij < 0.

(6)

Finally, the new similarity matrix W̃ is brought into the spectral clustering algorithm to170

obtain the final clustering result.171

3.3. Analysis of the problems of LDP-SC172

For LDP-SC, points in the same family tree will be grouped into the same cluster, and173

if a family tree contains points that should be in different clusters, then the algorithm will174

make mistakes that cannot be corrected in later stages. In other words, the purity of trees is175

crucial for the clustering performance of LDP-SC. Also, even if the trees have high purity, the176

stage of aggregating trees of LDP-SC might specify wrong similarities between trees when177

dealing with complex data. Two examples of such problems of LDP-SC on constructing178

trees and specifying similarities have been given in Figure 1.179

The above two problems of LDP-SC remind us that the two steps of LDP-SC, i.e., build-180

ing family trees and aggregating family trees, still need to be improved. In this article, we181

propose a novel algorithm, called SLDPC, that resolves the two problems of LDP-SC by im-182

proving the two steps with the help of semi-supervised constraint information. Particularly,183

the proposed SLDPC algorithm will first use semi-supervised constraint information to help184

select parent nodes of points to improve the purity of family trees. Additionally, by utilizing185

E2CP, SLDPC will optimize the established similarity matrix of family trees according to186

the constraint information to improve the aggregation effect, and thus to improve the overall187

clustering performance.188

9

Similar to LDP-SC, SLDPC is also divided into two main stages: building the family189

trees and aggregating family trees. The differences are that we add intra-cluster conflict190

resolution, inter-cluster conflict resolution, root node redirection and noise filtering steps191

in the stage of building family trees, and add the similarity matrix adjustment step in the192

family tree aggregation stage based on pairwise constraints M and C (cf. Section 3.2). In193

the following, we will discuss this two main steps in sequence.194

4. SLDPC stage 1: Building family trees based on pairwise constraints195

4.1. Building initial family trees196

We use the corresponding steps in LDP-SC (cf. Algorithm 1) to obtain the initial family197

trees. LDP-SC assumes that points in each family tree are highly similar and in a same198

class, and subsequently, the clustering of data points can be transformed into aggregating199

family trees. However, as shown in Introduction, this assumption is unreasonable for some200

complicated data distributions. We utilize must-link and cannot-link pairwise constraint201

information to correct the family trees.

Algorithm 1: BuildFamilyTree
Input: A data set X; the number of nearest neighbors k.
Output: Family trees represented by a parent-child relation P and a set of root

nodes root.
1 foreach xi ∈ X do
2 Calculate KNN(xi) and the distance matrix dist;
3 Calculate ρ(xi);
4 root← ∅;
5 foreach xi ∈ X do
6 Compute P (xi) according to Eq. 2;
7 if P (xi) = None then
8 root← root ∪ {xi};
9 return P , root.

202

10

4.2. Intra-cluster conflict resolution203

Intra-cluster conflict resolution is the process of splitting family trees to increase the204

purity of each tree. Only the cannot-link information C is used at this step. For a family205

tree T , if there exist points xi, xj ∈ T such that (xi, xj) ∈ C, then it means that there is a206

conflict inside T , as points in a tree should be in the same class. We resolve this kind of207

conflicts by splitting the corresponding tree into multiple trees. To determine where to split208

a tree, we define the difference degree between a pair of parent-child nodes in a family tree209

to measure how different these nodes are.210

Definition 3. If xi and xj are a pair of parent-child nodes, then the difference degree diff

between them is defined as:

diffi,j =
√
d2ij + λ(ρi − ρj)2 (7)

where dij represents the Euclidean distance between xi and xj; ρi and ρj represent the211

density of xi and xj respectively; λ is a weighting parameter to balance the scale of the two212

terms. Since the data sets will undergo normalization, the density and distance will have213

roughly the same magnitude, and we will take an empirical value of λ as 1 in this paper.214

For two conflicting points in a tree, there is a unique path between them. For each pair215

of parent-child nodes on the path, we calculate the diff value, and split the tree into two216

trees on the edge where the diff value is the largest. It is easy to see that by repeating the217

tree splitting operation finite times, there will be no cannot-link pairs in each family tree.218

Figure 2 shows the process of splitting a tree. The left shows the family trees established219

by Algorithm 1, and the two pentagrams represent a pair of cannot-link points. The middle220

shows the path (red) between the constrained pairs, and the right shows the result after221

splitting a tree. We can see that the chosen position to split the family tree is consistent222

with our intuition, i.e., it is where the difference is visually the largest.223

4.3. Inter-cluster conflict resolution224

After intra-cluster conflict resolution, the points in the same tree will not have a conflict225

with each other. However, there may still exist conflicts between trees.226

11

0.5 1.0 1.5 2.0

1.0

0.5

0.0

0.5

1.0

1.5

A

B

Cannot-link

0.5 1.0 1.5 2.0

1.0

0.5

0.0

0.5

1.0

1.5

A

B

Path

0.5 1.0 1.5 2.0

1.0

0.5

0.0

0.5

1.0

1.5

A

B

Result

Figure 2: Process of splitting a tree.

Example 1. Consider the left picture in Figure 3, where M = {(A,B), (C,D)} and C =227

{(E,F)}. By the assumptions that both points in a same family tree and points with must-228

link belong to the same class, we will have F and A, A and B, B and C, C and D, and D229

and E are in the same class, respectively. Then by transitivity, it is easy to conclude that230

E and F should also belong to the same class, which is a contradiction to the cannot-link231

constraint.232

In the following, we propose two steps to solve this problem: detecting conflicts and233

resolving conflicts.234

Note that conflicts between trees might be implicit, as the above example has shown.235

We need to introduce a closure operation for the must-link constraints to reveal all implicit236

must-link information and to detect conflicts.237

First, let G = (V,E) be an undirected graph, where V = {T1, . . . , Tp} are the family238

trees and an edge exists between two family trees if there is a must-link relation between239

two points in the corresponding family trees. Then we construct a must-link matrix MM240

and a cannot-link matrix MC for family trees based on G. For the must-link matrix MM,241

the element at row i and column j (i ̸= j) is 1 iff Ti and Tj in G are in the same connected242

component of G. For the cannot-link matrix MC, the element at row i and column j (i ̸= j)243

12

is −1 iff there is a point xi in some tree from the connected component containing Ti and244

a point xj in some tree from the connected component containing Tj, and (xi, xj) ∈ C. If245

∃i, j s.t. MM
ij = 1 and MC

ij = −1, then a conflict is detected, as MM
ij = 1 indicates that Ti246

and Tj are in the same component and all points from the same component should be in the247

same class, but MC
ij = −1 indicates that there are points from the component containing Ti248

and Tj that should not be in the same class.249

Tree splitting is then exploited to resolve the detected inter-cluster conflicts. The general250

idea is as follows:251

• When there is an inter-cluster conflict, it will occur between two points that are in252

two family trees that are in the same component of G.253

• We can split a family tree into two new trees by removing an edge of it, and accordingly254

update the graph G of family trees to include the two new trees as vertices and to255

remove the vertex corresponding to the original tree.256

• By repeatedly splitting the trees and updating the graph G, finally we can make two257

points that have cannot-link belong to two trees that are not in the same connected258

component of G, given that the must-link and cannot-link constraints are consistent259

(see Theorem 1).260

To determine which tree to split and where to split, we devise a greedy strategy to find an261

edge in a tree to remove:262

1. Identify all candidate points that are involved in a must-link or a cannot-link con-263

straint;264

2. Find and remove the edge that is on the path connecting two candidate points in the265

same tree and has the largest diff value.266

After splitting a tree, the graph G will be updated accordingly as mentioned above. Note267

that the corresponding vertices of the resulting two trees may be still in the same connected268

component of G, because there might be a must-link constraint between points in these two269

13

trees, which means that the conflict still exists. Nevertheless, as observed in Theorem 1, by270

repeating the above steps finite times, an inter-cluster conflict will be correctly resolved.271

Definition 4. A set M of must-link constraints and a set C of cannot-link constraints are272

said to be consistent iff for any two points xi and xj having a cannot-link constraint in C,273

there is no sequence of points xi = xi0 , xi1 , . . . , xit = xj s.t. xil and xil+1
(l = 0, . . . , t − 1)274

are all connected by a must-link constraint in M.275

Theorem 1. Suppose that the given set of must-link constraints and the set of cannot-link276

constraints are consistent. Let xi and xj be two points from two trees corresponding to277

two vertices in the same connected component of G. If there is a cannot-link constraint278

between xi and xj, then by following the steps described beforehand in finite times, the tree279

containing xi and the tree containing xj will no longer be in the same connected component280

of (the updated) G.281

Proof. Assume on the contrary that the tree containing xi and the tree containing xj are282

still in the same connected component of G and no tree splitting is possible. There are two283

cases:284

• xi and xj are in the same tree.285

• xi and xj are in two different trees.286

For the first case, xi and xj are two candidate points in the same tree, and the edge that is287

on the tree-path connecting them and has the largest diff value can be removed, which is a288

contradiction to the assumption that no tree splitting is possible. For the second case, as the289

tree T (xi) containing xi and the tree T (xj) containing xj are still in the same component,290

there must be a path of must-link edges in G between T (xi) and T (xj), and for each tree on291

the path there are two points in it, each of are involved in a must-link constraint. If there292

are two different such points in a tree on the path, then an edge on the tree-path connecting293

them can be removed when no other edges can be removed, resulting again a contradiction294

to the assumption. If there are no such two points, i.e., each tree on the path contains295

14

only one point, then in this case the set of must-link constraints and the set of cannot-link296

constraints are not consistent, which is a contradiction to the given condition.297

0.5 1.0 1.5 2.0

1.0

0.5

0.0

0.5

1.0

1.5

A

BC

D
E

F

Constraint

Must-link
Cannot-link

0.5 1.0 1.5 2.0

1.0

0.5

0.0

0.5

1.0

1.5

A

BC

D
E

F

Path

0.5 1.0 1.5 2.0

1.0

0.5

0.0

0.5

1.0

1.5

A

BC

D
E

F

Result

Figure 3: Process of inter-cluster conflict resolution.

Figure 3 illustrates the process of inter-cluster conflict resolution for the configuration298

in Example 1. Let T1 be tree containing the points A and F , T2 containing B and C, and299

T3 containing D and E. Then in G, there are two edges, i.e., (T1, T2) and (T2, T3), and thus300

a connected component {T1, T2, T3}. The corresponding must-link matrix and cannot-link301

matrix for T1, T2, T3 are as follows:302

MM =

0 1 1

1 0 1

1 1 0

 , MC =

0 −1 −1

−1 0 −1

−1 −1 0

From the above two matrices, we can see that there are conflicts in the component303

{T1, T2, T3}, e.g., E and F are in the same class according to MM but (E,F) ∈ C. For304

tree splitting, the candidate points are {A,B,C,D,E, F}, and (A,F), (B,C), (D,E) are305

the only pairs consisting of two candidate points in the same tree. The path connecting the306

points in each pair is drawn as a red curve in the middle of Figure 3. By comparing the diff307

values of the edges on the paths, an edge on the path connecting A and F is chosen to be308

15

removed. The result of splitting is shown on the right of Figure 3. It can be seen that the309

conflict has been resolved, as the tree containing E and the tree containing F are no longer310

in the same connected component.311

4.4. Root nodes redirection312

Both intra-cluster conflict resolution and inter-cluster conflict resolution adopt the idea of313

tree splitting, which resolves conflicts by making family trees smaller. However, continuously314

splitting trees may cause the trees to become too fragmented. Especially at the inter-cluster315

conflict resolution stage, the trees are split repeatedly until the conflicts are all resolved,316

which may result in a large number of fragmented trees. In extreme cases, each tree will317

contain only one point, which is not desired.318

Figure 4 shows the result of intra-cluster conflict resolution (left) and inter-cluster conflict319

resolution (middle) for one instance of randomly generating 0.5n (n represents the number320

of samples) pairwise constraints. Points with red circles represent the root nodes of family321

trees. It can be seen in the middle that after inter-cluster conflict resolution, although the322

purity of the current family trees has become very high, there are many fragmented trees323

containing only a single node.324

0.5 1.0 1.5 2.0 2.5

1.0

0.5

0.0

0.5

1.0

1.5

0.5 1.0 1.5 2.0 2.5

1.0

0.5

0.0

0.5

1.0

1.5

0.5 1.0 1.5 2.0 2.5

1.0

0.5

0.0

0.5

1.0

1.5

Figure 4: Results of family trees.

Thus, a further merging operation on the split family trees is needed. Similar to the325

definition of the parent of a point in Eq. 2, with pairwise constraint information, it is326

16

reasonable to consider that the parent of the root node of a family tree should also be327

consistent with the constraint information, i.e., for the tree Ti containing the parent and the328

tree Tj containing the root node, MC
ij ̸= −1.329

More specifically, for the family trees after conflict resolution, we check the root nodes in330

the order where densities are from high to low. For each root node xi, we define the parent331

of it to be the closest point p̄ ∈ KNN(xi) to xi such that ρ(p̄) > ρ(xi) and is consistent332

with xi in terms of the cannot-link information as described above. We call this operation333

root node redirection, which will combine two trees. After combining two trees, we will also334

update the graph G of trees and the two matrices MM and MC.335

Figure 4 (right) shows the result of root node redirection for Figure 4 (middle). It can336

be seen that most of the fragmented trees have been merged while ensuring consistency with337

the constraint information. The number of family trees is reduced by more than half, and338

the purity is still maintained.339

Algorithm 2 gives the whole process of building family trees based on pairwise constraints.340

5. SLDPC stage 2: Aggregating family trees based on constraint propagation341

5.1. Calculating similarity matrix342

We first calculate the original similarity matrix of the constructed family trees and

normalize it to obtain the matrix W = {wij}p×p (p is the number of family trees), as in

LDP-SC. Here, W is symmetric and 0 ≤ wij ≤ 1. Then, in order to make full use of

pairwise constraints information, we use the E2CP method (cf. Section 3.2) to optimize

the similarity matrix by pairwise constraints. The constraint matrix Z required by E2CP is

MM+MC obtained from the graph G of family trees. Recall that the constraint propagation

matrix F ∗ = {f ∗
ij}p×p can be obtained by:

F ∗ = (1− α)2(I − αL)−1Z(I − αL)−1, (8)

where L = D−1/2WD−1/2, D is a diagonal matrix with Dii =
∑

j Wij. We set f̃ ∗
ij =343

f ∗
ij/maxi′,j′

∣∣f ∗
i′j′

∣∣ to obtain the standardized matrix F̃ ∗, and then use Eq. 6 to calculate the344

17

Algorithm 2: FamilyTreeWithConstraint
Input: A data set X; the number of nearest neighbors k; pairwise constraintsM, C
Output: Family trees represented by a parent-child relation P and the set of root

nodes root.
1 P, root← BuildFamilyTree(X, k);
2 // Intra-cluster conflict resolution;
3 foreach (xi, xj) ∈ C do
4 if root(xi) = root(xj) then
5 Find the parent-child pair a = P (b) with the largest diff degree on the path

of xi and xj;
6 P (b)← None; root← root ∪ {b};
7 // Inter-cluster conflict resolution;
8 Construct the graph G of family trees;
9 MM,MC ← construct from G;

10 while ∃ a conflict in the constraint matrix do
11 {r1, r2, · · · , rt} ← the component corresponding to the conflict;
12 Ψ ← ∅;
13 foreach (xi, xj) ∈ C ∪M do
14 if root(xi), root(xj) ∈ {r1, r2. · · · , rt} then
15 Ψ ← Ψ ∪ {xi, xj};
16 foreach xi, xj ∈ Ψ do
17 if root(xi) = root(xj) then
18 Calculate diff degrees of all parent-child pairs on the path of xi and xj;
19 Find the parent-child pair P (b) = a with the largest diff degree;
20 P (b)← None; root← root ∪ {b};
21 Update G;
22 MM,MC ← update from G;
23 // Root node redirection;
24 sorted_root← sort(root);
25 foreach xi ∈ sorted_root do
26 if ∃ closest point p̄ ∈ KNN(xi) s.t. ρ(p̄) > ρ(xi), and p̄ as parent of xi is

consistent with the cannot-link matrix then
27 P (xi)← p̄ ;
28 root← (root \ {xi}) ∪ {p̄};
29 Update G;
30 MM,MC ← update from G;
31 return P , root.

18

final similarity matrix W̃ .345

In LDP-SC, to avoid the adverse effects of multiple connected components on the spectral346

clustering, W is updated to be W + θW ′ to adjust the similarity matrix. Our algorithm is347

more conservative. Specifically, we first use E2CP method to obtain the adjusted similarity348

matrix W̃ , and then calculate the number of connected components based on the similarity349

matrix (two nodes ri, rj are connected if W̃ij is positive). If the number of connected com-350

ponents is greater than the target number of clusters, then we adjust the similarity matrix351

for graph cut by W̃ = W̃ + θW ′, where W
′
ij = exp(−∥ri − rj∥2 /2).352

5.2. Noise filtering353

In practice, we find that after the root node redirection step, there are still some family354

trees that contain very few points, which may cause these trees to be clustered as separate355

categories in the graph cut stage and greatly affect the final clustering result. To solve this356

problem, a noise filtering step is adopted.357

We first set a threshold τ . When the number of points contained in a family tree is less358

than or equal to τ , the root node is marked as noise. We traverse the set of all noise root359

nodes in the order where densities are from high to low, and for each noise root, check if360

there is a point in its k nearest neighbors having a higher density. If so, the closest such361

point is set as the parent of the noise root; otherwise, the closest non-noise root is set as362

its parent. By doing so, the trees containing noise roots are merged into other trees, thus363

avoiding clustering them as a single class.364

After the trees containing noise roots are merged, the rows and columns corresponding365

to the noise points in W̃ are deleted, and then the final similarity matrix W̃ ∗ is obtained.366

5.3. Graph cut and clustering of trees367

After the noise filtering step, we obtain the final family trees and the corresponding368

similarity matrix W̃ ∗. The last step is to perform graph cut and aggregate the family trees369

to obtain the final clustering result, which is exactly the same as LDP-SC. The whole process370

of the SLDPC algorithm is shown in Algorithm 3.371

19

5.4. Time complexity analysis372

The time complexity of LDP-SC is O(n2 + p3) [14], where n is the number of data373

points, and p is the number of family trees. Assume that the number of constraints is m.374

The proposed SLDPC algorithm is based on LDP-SC with five additional steps.375

(1) Intra-cluster conflict resolution (lines 3-6 in Algorithm 2): For each constraint, one376

need to find the path between them, and calculate the diff value between adjacent nodes in377

the path, so the time complexity is O(mn).378

(2) Inter-cluster conflict resolution (lines 8-22 in Algorithm 2): For lines 8-9, the con-379

nected graph between trees are constructed and then the pairwise constraint matrix is cal-380

culated, the time complexity is O(m + p2). Suppose the number of iterations of the while381

loop from line 10 to line 22 is s. For lines 11-12, one needs to find components corresponding382

to the conflict, and the time complexity is O(p2). For lines 13-15, constraint pairs for the383

conflict is identified and the complexity is O(m). For lines 16-20, the complexity is the same384

as the intra-cluster stage with O(mn). For lines 21-22, The complexity is similar to Lines385

8-9, with O(p2). Thus, the total complexity in this stage is O(s(mn+ p2)).386

(3) Root node redirection (lines 24-31 in Algorithm 2): For line 24, the time complexity387

of sort function is O(p log p). For lines 25-31, each root node will be checked if it should be388

assigned to another root, and the constraint matrix is updated, so the time complexity is389

O(p3).390

(4) E2CP propogation (line 10 in Algorithm 3): The time complexity is O(kmn) [16],391

where k is the number of nearest neighbors.392

(5) Noise filtering (line 14 in Algorithm 3): A sort algorithm for the set of all noise root393

nodes is performed, and then parent nodes for them are identified in its k nearest neighbors,394

so the complexity is O(p log p).395

Therefore, the total time complexity for the additional operations in the proposed al-396

gorithm is O(mn + s(mn + p2) + p3 + kmn + p log p). Usually, k and p are much smaller397

than n, and s is much smaller than m, so in most cases the actual time complexity of the398

overhead calculations w.r.t. LDP-SC is about O(smn+ p3).399

20

Algorithm 3: SLDPC
Input: data set X; number of clusters C; number of nearest neighbors k; pairwise

constraints M and C
Output: Clustering result label.

1 P, root← FamilyTreeWithConstraint(X, k,M, C);
2 foreach (ri, rj) ∈ root× root and ri ̸= rj do
3 Wij ← sim(T (ri), T (rj)) by Eq. 3;
4 W ← W/max(W) and set each Wii to 1;
5 Construct the graph G of family trees;
6 MM,MC ← construct from G;
7 Z ←MM +MC;
8 Calculate F ∗ by Eq. 8;
9 Using f̃ ∗

ij = f ∗
ij/maxi′,j′

∣∣f ∗
i′j′

∣∣ get standardized matrix F̃ ∗;
10 Use Eq. 6 to obtain similarity matrix W̃ ;
11 if the number of connected components of W̃ is bigger than C then
12 Compute the Gaussian kernel distance matrix W ′;
13 W̃ ← W̃ + θW ′;
14 Obtain W̃ ∗ by noise filtering;
15 foreach ri ∈ root do Dii ←

∑
j W̃

∗
ij ;

16 L← D − W̃ ∗;
17 foreach ri ∈ root do D∗

ii ← |T (ri)| ;
18 U ← DD∗;
19 E ← (t1, . . . , tC), the C eigenvectors of U−1/2LU−1/2 corresponding to its C

smallest eigenvalues;
20 foreach (ri, rj) ∈ root× root do
21 Yij ← Eij/(

∑C
s=1 E

2
is)

1/2;
22 Apply K-means on Y to obtain cluster label ci for each T (ri);
23 foreach ri ∈ root do
24 foreach xi ∈ T (ri) do
25 label(xi)← ci;
26 return label.

21

6. Empirical Evaluations400

6.1. Experiment settings401

We compare SLDPC with LDP-SC and several other prominent algorithms on both402

synthetic data sets and real-world data sets. The chosen prominent algorithms are displayed403

in Tabel 1.404

Table 1: Comparison algorithms
Algorithm Date, Publication Parameters
SLDPC Ours c, k, τ, α, λ
LDP-SC [14] 2022, Information Sciences c, k
E2CP [16] 2013, International Journal of Computer Vision c, k, α
WECR k-means [30] 2019, IEEE Transactions on Knowledge and data engineering c, γ, ri, rf
SSFPC [27] 2021, IEEE Transactions on Fuzzy Systems α, β
A-SSC [35] 2023, IEEE Transactions on Neural Networks and Learning Systems. -
TLRR [36] 2023, IEEE Transactions on Circuits and Systems for Video Technology λ, β

* For multi-parameter algorithms, grid search is used to select the optimal parameters.

The parameter c (number of target clusters) of LDP-SC is set as the number of ground-405

truth clusters. The parameter k (number of nearest neighbors) is searched from 2 to 30. For406

SLDPC, parameters c, k are set to be the same as LDP-SC. The weighting parameter λ in407

Eq. 3 is set as 1. The noise filtering threshold τ is set as log2(k), and the parameter α is set408

as 0.6 according to the original recommendation of E2CP algorithm. The implementation409

of E2CP is based on the descriptions of the original paper, using Eq. (5) to do pairwise410

constraint propagation.411

For WECR k-means, the number of clusters c is set as the number of ground-truth412

clusters, γ is searched in {0.1, 0.2, · · · , 1}, and the parameters ri, rf in the subspace stage413

is searched in {(0.7, 0.7), (0.7, 0.3), (0.3, 0.7)}. The source code is provided by the authors1.414

For SSFPC, α is searched from 0 to 0.3 with a step size of 0.02. β is searched in {0, 0.005}.415

The implementation is from the source code provided by the authors2. The source code of416

TLRR and A-SSC is provided by the authors, with parameters set to be same with those in417

the original papers.418

1https://codeocean.com/capsule/0235982
2https://github.com/gamer1882/FDC

22

https://codeocean.com/capsule/0235982
https://github.com/gamer1882/FDC

Table 2: Synthetic and real-world data sets.
Data set Pathbased Compound orl breast brea baobab worldmap mfeat-kar segm baldder cic-ids mnist pendigits letter-recognition

#Instance 300 399 400 683 699 900 935 2000 2100 2486 4219 10000 10992 20000
#Attribute 2 2 4096 9 9 892 899 64 19 512 77 768 16 16

#Cluster 3 6 40 2 2 3 3 10 7 4 12 10 10 26

In terms of data sets, we selected two synthetic data sets and twelve real-world data sets419

including image data sets (orl, mfeat-kar, segm, mnist, pendigits, and letter-recognition)3,420

medical data sets (breast and brea)4, bioinformation data sets (bladder)5, cybersecurity data421

sets (cic-ids)6, and two data sets (baobab and worldmap) by Microsoft7. The details are422

shown in Table 2. For non-image data sets, the z-score method is used for normalization.423

Pictures whose pixel values in range [0, 255] is scaled to [0, 1].424

For each dataset, in order to show the results of the algorithms under different numbers425

of pairwise constraints, we generate pairwise constraints with five different numbers: 0.1n,426

0.2n, 0.3n, 0.4n, 0.5n (n represents the number of samples). Must-link and cannot-link427

constraints are generated by randomly choosing two samples and check their ground-truth428

labels: if they have the same label, then they are taken as a must-link constraint; otherwise,429

they are considered as a cannot-link constraint. Ten groups of pairwise constraint infor-430

mation are randomly generated for each number. Note that for any data set containing n431

samples, the number of constraints can reach the order of n2. In contrast, the constraint432

numbers selected by us are relatively small, which is consistent with the assumption of433

semi-supervised constraints and practical application scenarios. All data sets and groups434

of pairwise constraints are pre-generated and saved, so that all algorithms use the same435

constraint information.436

We select Adjusted Rand Index (ARI), Normalized Mutual Information (NMI) and Ac-437

curacy (ACC) for performance evaluation. The values are scaled to display within the range438

[0, 100]. Since ten groups of pairwise constraints are generated for each amount of con-439

straints, we calculate the optimal result for each parameter within each group, and then440

3https://archive.ics.uci.edu/dataset
4https://archive.ics.uci.edu/dataset/15/breast+cancer+wisconsin+original
5https://figshare.com/articles/software/scBGEDA/19657911
6https://www.unb.ca/cic/datasets/ids-2017.html
7https://www.microsoft.com/en-us/research/tools/

23

https://archive.ics.uci.edu/dataset
https://archive.ics.uci.edu/dataset/15/breast+cancer+wisconsin+original
https://figshare.com/articles/software/scBGEDA/19657911
https://www.unb.ca/cic/datasets/ids-2017.html
https://www.microsoft.com/en-us/research/tools/

take the average of the optimal results from the ten groups as the final result and calculate441

their standard deviation.442

6.2. Results and analysis on synthetic data sets443

Since WECR k-means is based on subspace clustering, which is specifically designed444

for high-dimensional data sets, it is not involved in the comparison conducted on two 2-445

dimensional data sets in this section. For each data set, we calculate the mean and variance446

of the clustering indexes for each algorithm for different constraint numbers. Due to space447

limitations, only the result of the mean ARI is shown here (see Figure 5).448

0.1n 0.2n 0.3n 0.4n 0.5n
Size of Constraints

0

20

40

60

80

100

AR
I

Compound

SLDPC
E2CP
SSFPC
A-SSC
LDP-SC

0.1n 0.2n 0.3n 0.4n 0.5n
Size of Constraints

0

20

40

60

80

100
AR

I
Pathbased

SLDPC
E2CP
SSFPC
A-SSC
LDP-SC

Figure 5: Results on synthetic data sets.

The left of Figure 5 shows that the mean ARI of SLDPC is higher than other comparison449

algorithms for all constraint numbers on the Compound dataset. Its performance gradually450

improves with the increase of the constraint number. When the constraint number reaches451

0.4n, its performance tends to be stable, and the mean value of ARI is about 93. The right452

of figure 5 shows the results of the Pathbased dataset. The mean ARI of SLDPC is also453

higher than other comparison algorithms globally. For SLDPC, when the constraint number454

is under 0.3n, the performance improvement is evident with the increase of the constraint455

number, and the performance tends to be stable after exceeding this number. When the456

constraint number reaches 0.5n, the mean value of ARI reaches 98. At the same time, E2CP457

reaches 95, which is slightly lower than SLDPC. However, when the constraint number is458

under 0.3n, the performance of E2CP is far behind SLDPC.459

Figure 6 shows the clustering results of LDP-SC and SLDPC under different numbers460

of pairwise constraints on the Compound dataset, where the results are selected from ex-461

24

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
LDP-SC

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
SLDPC (0.1n)

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
SLDPC (0.2n)

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
SLDPC (0.3n)

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
SLDPC (0.4n)

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
SLDPC (0.5n)

Figure 6: Visualization of results on Compound data set.

1.5 1.0 0.5 0.0 0.5 1.0 1.5

2

1

0

1

2

LDP-SC

1.5 1.0 0.5 0.0 0.5 1.0 1.5

2

1

0

1

2

SLDPC (0.1n)

1.5 1.0 0.5 0.0 0.5 1.0 1.5

2

1

0

1

2

SLDPC (0.2n)

1.5 1.0 0.5 0.0 0.5 1.0 1.5

2

1

0

1

2

SLDPC (0.3n)

1.5 1.0 0.5 0.0 0.5 1.0 1.5

2

1

0

1

2

SLDPC (0.4n)

1.5 1.0 0.5 0.0 0.5 1.0 1.5

2

1

0

1

2

SLDPC (0.5n)

Figure 7: Visualization of results on Pathbased data set.

periments that exhibit outcomes closest to the mean value shown in Figure 5. On the right462

part of the data set, it can be seen that the original LDP-SC algorithm clusters the two463

types of data, i.e., data with higher density and data with low density, into one class. Due464

to the limitation of the number of clusters, a small part in the lower left corner is cut out as465

a single class. For SLDPC, when the constraint number is 0.1n, the right part of the data466

set is incorrectly divided into two wrong pieces as well. With the increase of the constraint467

number, the division of the right area tends to be correct. Since good clustering results468

rely on the prerequisite of having no conflicts within the generated tree, we can infer that469

intra-cluster conflict resolution and inter-cluster conflict resolution have played a crucial role470

in enhancing the purity of the trees.471

Figure 7 shows the clustering result of LDP-SC and SLDPC on the Pathbased data set472

under different constraint numbers. The banded area in the outermost layer of the data set473

cannot be correctly identified by DPC-SC. In SLDPC, when the constraint number is only474

0.1n, the banded area on the right side of the dataset is basically identified except for the data475

in the left corner. When the constraint number is above 0.2n, the performance of SLDPC is476

already close to the optimal clustering result. For this data set, SLDPC can greatly enhance477

the performance of clustering with only a small amount of constraint information.478

25

Table 3: Clustering results on smaller real-world data sets (ACC/NMI/ARI).
Data Size LDP-SC SSFPC WECR k-means E2CP A-SSC TLRR SLDPC

orl

0.1n 64.75/82.87/50.92 24.30/14.25/36.84 N/A 64.47/82.12/48.91 N/A 52.69/73.12/37.24 63.75/83.09/50.90
0.2n 64.75/82.87/50.92 24.12/14.00/35.68 N/A 65.95/82.56/50.31 N/A 50.81/72.66/36.31 63.73/83.09/50.87
0.3n 64.75/82.87/50.92 27.16/14.00/35.96 N/A 64.67/81.84/49.70 N/A 54.94/74.07/39.44 65.12/83.11/51.26
0.4n 64.75/82.87/50.92 34.29/12.50/34.06 N/A 65.45/82.48/49.95 N/A 53.25/73.36/38.22 65.65/83.34/51.61
0.5n 64.75/82.87/50.92 34.29/12.50/34.06 N/A 65.55/82.49/51.18 N/A 51.31/72.57/36.51 66.25/83.52/52.56

breast

0.1n 96.19/75.96/85.18 96.88/78.99/87.81 95.92/74.18/84.16 97.07/79.84/88.53 96.59/77.48/86.68 83.42/44.58/44.61 95.46/73.12/82.49
0.2n 96.19/75.96/85.18 96.5/76.9/86.37 96.0/74.57/84.48 97.04/79.67/88.41 97.13/80.44/88.73 82.76/43.07/42.86 95.99/75.48/84.46
0.3n 96.19/75.96/85.18 96.43/76.63/86.09 96.03/74.7/84.59 97.13/80.15/88.75 97.61/83.07/90.59 82.58/42.28/42.38 97.53/82.53/90.26
0.4n 96.19/75.96/85.18 95.84/73.91/83.88 95.96/74.37/84.32 97.14/80.21/88.8 97.69/83.35/90.88 82.54/42.28/42.28 97.58/83.0/90.49
0.5n 96.19/75.96/85.18 96.0/74.73/84.48 96.0/74.55/84.49 97.41/81.76/89.81 98.10/85.94/92.46 83.35/44.34/44.41 97.79/84.03/91.28

brea

0.1n 95.99/74.78/84.42 96.62/77.69/86.83 95.89/73.78/84.07 96.75/78.19/87.31 96.65/77.64/86.91 82.33/42.75/41.74 95.49/72.95/82.58
0.2n 95.99/74.78/84.42 96.01/74.57/84.52 95.99/74.23/84.45 96.68/77.72/87.03 96.78/78.43/87.39 82.22/41.55/41.46 96.55/77.52/86.56
0.3n 95.99/74.78/84.42 95.79/73.5/83.7 96.02/74.37/84.55 96.77/78.19/87.36 97.68/83.27/90.85 83.19/44.50/44.01 97.17/80.46/88.88
0.4n 95.99/74.78/84.42 95.62/72.64/83.05 96.09/74.71/84.82 96.72/77.94/87.2 97.88/84.46/91.62 82.33/42.21/41.76 97.47/82.08/90.03
0.5n 95.99/74.78/84.42 95.62/72.64/83.05 95.99/74.23/84.45 97.04/79.68/88.39 98.11/85.76/92.51 82.80/42.67/42.97 97.81/84.21/91.36

baobab

0.1n 65.22/5.83/9.93 44.34/1.85/0.99 53.98/5.77/9.44 62.9/8.48/18.57 62.04/5.48/13.83 41.00/3.96/2.81 64.54/6.18/13.6
0.2n 65.22/5.83/9.93 46.07/2.88/1.49 53.6/5.64/9.84 62.96/8.45/16.42 60.92/6.17/12.79 39.69/2.94/2.63 66.61/10.51/20.95
0.3n 65.22/5.83/9.93 51.38/1.64/0.95 53.61/5.53/8.72 64.69/8.99/18.36 61.11/6.80/13.66 41.64/3.61/4.14 66.87/12.21/26.39
0.4n 65.22/5.83/9.93 47.93/2.84/1.61 54.39/5.82/10.47 66.6/11.05/20.86 62.02/7.70/15.00 45.97/2.76/4.34 68.38/14.61/29.26
0.5n 65.22/5.83/9.93 48.77/4.78/5.41 53.79/5.49/9.37 67.18/12.37/24.43 61.76/7.54/15.29 48.11/2.30/3.53 70.0/18.83/33.8

worldmap

0.1n 61.71/6.89/11.93 47.34/2.54/0.99 57.54/6.61/13.93 71.27/9.98/16.07 61.65/0.61/3.87 41.42/3.84/2.00 62.65/7.93/14.24
0.2n 61.71/6.89/11.93 46.96/2.83/1.34 58.82/6.54/14.38 70.65/10.73/18.16 60.83/0.82/4.47 40.96/3.74/1.80 66.51/10.65/19.74
0.3n 61.71/6.89/11.93 47.6/2.17/1.36 57.85/6.87/14.35 71.56/10.59/16.12 62.46/1.52/6.54 41.60/4.28/1.67 71.83/12.56/24.62
0.4n 61.71/6.89/11.93 49.36/1.76/0.64 58.24/6.98/14.68 68.45/10.07/16.17 61.78/1.31/5.83 41.10/3.94/1.26 74.82/16.59/32.88
0.5n 61.71/6.89/11.93 53.21/1.99/1.6 58.0/6.92/14.59 72.05/12.16/17.36 62.18/1.65/6.68 41.20/4.68/1.90 75.43/18.4/34.84

mfeat-kar

0.1n 84.6/84.39/77.89 26.64/20.67/10.31 78.57/78.88/70.83 81.6/84.58/75.95 69.88/70.33/59.10 71.30/69.62/60.89 85.96/82.23/77.51
0.2n 84.6/84.39/77.89 26.9/20.5/10.14 78.52/78.79/70.76 81.32/84.59/75.76 72.06/71.64/61.11 80.49/72.78/66.96 85.74/82.74/77.84
0.3n 84.6/84.39/77.89 25.28/19.25/9.47 78.51/78.76/70.73 83.09/86.29/78.27 74.91/72.71/62.97 73.04/71.17/62.99 86.88/83.35/78.97
0.4n 84.6/84.39/77.89 27.06/20.6/10.35 78.48/78.77/70.72 82.95/86.63/78.46 72.76/71.98/61.69 71.78/71.80/62.99 88.6/84.33/80.62
0.5n 84.6/84.39/77.89 27.39/20.94/10.56 78.53/78.83/70.8 83.26/87.0/79.09 70.22/70.67/59.60 80.88/73.94/69.18 89.99/84.99/81.89

segm

0.1n 51.9/52.59/36.73 64.66/61.03/51.0 60.63/64.99/50.52 56.9/63.75/46.86 54.47/53.78/37.82 68.14/62.00/53.15 68.35/67.62/56.06
0.2n 51.9/52.59/36.73 64.16/61.11/50.5 60.6/64.96/50.53 60.68/68.67/53.0 56.33/54.29/39.50 70.14/60.97/54.03 75.55/72.84/64.47
0.3n 51.9/52.59/36.73 63.9/60.94/50.17 60.63/65.0/50.55 65.09/72.85/57.07 57.76/54.89/40.21 71.83/62.13/54.87 77.9/76.45/68.38
0.4n 51.9/52.59/36.73 65.28/61.8/51.48 60.64/65.03/50.57 71.87/76.48/63.23 58.71/54.66/40.40 70.88/60.32/53.54 83.0/78.17/72.62
0.5n 51.9/52.59/36.73 64.3/61.33/50.71 60.6/64.99/50.54 71.55/77.66/64.12 56.73/53.31/39.48 68.26/60.39/51.60 86.04/80.34/75.69

bladder

0.1n 92.68/81.87/89.36 61.9/10.53 /7.63 41.28/10.65/10.62 49.74/7.95/2.81 71.30/54.34/54.37 82.18/76.45/75.28 97.13/88.10/93.98
0.2n 92.68/81.87/89.36 62.43/9.19 /7.28 40.79/10.19/10.04 49.65/7.69/2.74 71.44/54.71/55.76 79.00/71.63/71.60 96.44/87.32/93.16
0.3n 92.68/81.87/89.36 50.93 / 8.41/ 6.28 39.84/9.63/9.39 49.73/8.56/3.07 71.62/54.99/56.71 79.32/67.64/70.36 95.82/86.82/92.73
0.4n 92.68/81.87/89.36 48.15 /8.56 6.42 40.08/9.56/9.28 49.73/7.76/2.73 71.59/55.18/57.41 79.24/67.80/69.77 95.26/87.04/92.20
0.5n 92.68/81.87/89.36 63.75/10.69/ 7.85 41.22/9.90/9.88 49.85/9.03/3.18 72.03/55.66/58.18 80.19/66.76/71.50 95.38/86.33/92.41

6.3. Results and analysis on real-world data sets479

Table 3 and Table 4 show the mean of ACC, NMI and ARI of SLDPC and each com-480

parison algorithm on world-real data sets. If the result cannot be obtained within 5 hours,481

it is marked as N/A.482

From Table 3 and Table 4, we can see that SLDPC has the best performance in most483

cases. Compared with LDP-SC, SLDPC performs significantly better except for a few data484

sets, and this trend becomes more and more evident as the constraint number increases. The485

proposed algorithm further improves the clustering effect on the basis of LDP-SC. A-SSC486

on orl shows N/A because it cannot deal with this very high-dimensional data. The WERC487

k-means on orl shows N/A because the limited number of samples makes it infeasible to488

generate sub-labels.489

For the first eight smaller data sets, a Friedman test was conducted on seven comparison490

methods with accuracy (ACC) as an example (the results for ARI and NMI are similar).491

The statistic value for this test was 130.16, and the P-value was 1.19×10−25. This indicates492

that at a significance level of 0.05, there are statistically significant differences among these493

26

Table 4: Clustering results on larger real-world data sets (ACC/NMI/ARI).
Data Size LDP-SC WECR k-means E2CP A-SSC SLDPC

cic-ids

0.1n 54.61/63.04/37.49 54.96/65.55/42.69 66.51/70.45/54.21 40.28/47.21/25.75 70.61/74.26/62.02
0.2n 54.61/63.04/37.49 56.89/66.55/44.18 70.33/74.56/62.03 40.78/47.22/27.26 72.26/75.86/62.57
0.3n 54.61/63.04/37.49 53.93/63.04/37.38 76.44/77.75/67.93 40.43/47.54/28.27 75.30/77.67/65.10
0.4n 54.61/63.04/37.49 56.10/65.62/43.07 75.53/78.54/68.40 38.87/45.10/26.93 75.62/77.91/67.33
0.5n 54.61/63.04/37.49 56.19/66.19/44.26 76.84/79.07/69.10 38.76/44.01/26.18 78.15/78.39/68.74

mnist

0.1n 77.22/75.63/68.5 65.34/68.51/56.35 74.13/77.16/66.63 54.56/50.54/38.67 88.55/80.32/78.37
0.2n 77.22/75.63/68.5 64.96/68.39/56.14 80.61/82.58/75.25 56.55/51.36/40.21 89.0/79.9/78.05
0.3n 77.22/75.63/68.5 64.52/68.28/55.95 85.08/84.54/79.46 55.89/51.30/39.78 89.83/80.97/79.53
0.4n 77.22/75.63/68.5 64.59/68.33/56.04 88.1/85.65/82.15 55.47/50.95/39.31 90.2/81.7/80.36
0.5n 77.22/75.63/68.5 64.66/68.38/56.12 91.87/87.27/85.95 57.16/52.21/41.04 91.03/82.44/81.65

pendigits

0.1n 89.3/86.31/80.04 73.18/75.86/60.45 88.41/84.68/78.3 69.41/66.70/53.88 91.23/91.04/86.21
0.2n 89.3/86.31/80.04 73.19/75.88/60.48 87.17/92.54/84.69 69.41/66.35/53.82 94.0/93.63/90.74
0.3n 89.3/86.31/80.04 73.17/75.85/60.43 95.49/94.41/92.67 69.51/66.21/53.92 98.27/96.05/96.22
0.4n 89.3/86.31/80.04 73.17/75.85/60.44 94.12/94.74/91.88 69.52/66.02/53.89 97.66/96.42/96.03
0.5n 89.3/86.31/80.04 73.17/75.85/60.44 95.37/95.26/93.42 69.53/65.84/53.83 96.77/96.41/95.3

letter-
recognition

0.1n 31.25/46.16/6.66 27.41/40.34/11.80 N/A 24.65/35.86/12.93 31.06/45.05/12.49
0.2n 31.25/46.16/6.66 27.18/40.33/11.76 N/A 24.39/35.82/12.84 38.10/52.34/19.08
0.3n 31.25/46.16/6.66 26.42/40.00/11.41 N/A 24.66/35.86/13.11 43.12/55.59/26.30
0.4n 31.25/46.16/6.66 27.29/40.39/11.91 N/A 25.25/35.78/13.29 45.66/57.27/30.43
0.5n 31.25/46.16/6.66 27.37/40.15/11.71 N/A 25.39/35.55/13.49 53.48/62.45/37.60

methods. Further Nemenyi post-hoc tests showed that, compared pairwise, SLDPC demon-494

strated statistically significant advantages over WECR k-means, SSFPC, A-SSC, TLRR,495

and LDP-SC, with P-values all less than 0.01. However, for E2CP, the significance level was496

0.66. This is mainly due to the fact that the Nemenyi test is primarily based on the rank of497

methods. In the first two datasets (breast and brea) where all methods performed relatively498

well, E2CP ranked higher, and in subsequent datasets, E2CP also maintained high rankings.499

As a result, the ranking-based analysis did not clearly show the advantage of SLDPC over500

E2CP.501

Nevertheless, looking at the specific metric values, our method exhibits clear advantages502

over E2CP on segm, bladder, pendigits, and letter-recognition data sets. Also, for larger503

datasets, such as Pendigits, mnist and letter-recognition, E2CP tends to be notably slower.504

In particular, for the letter-recognition dataset, E2CP failed to produce results within 5505

hours.506

7. Discussion507

7.1. Runtime comparison508

Table 5 and Table 6 present the runtimes (in seconds) of the compared algorithms. In509

Table 5, the constraint number is set to be 0.3n, and it compares the efficiency on data sets510

with a variety of sizes and dimensions. Table 6 demonstrates how the runtimes of these511

27

Table 5: Runtime comparison on various data sets (in seconds).
Algorithms breast mfeat-kar cic-ids pendigits

#Constraint= 0.3n n = 683, d = 9 n = 2000, d = 64 n = 4219, d = 77 n = 10992, d = 16

LDP-SC 0.44 0.48 0.89 0.98
SSFPC 47.83 2714 N/A N/A

WECR k-means 4.38 5.88 6.71 16.21
E2CP 0.3 1.13 23.7 70.75
A-SSC 0.07 37.93 272.67 153.59
TLRR 171.8 6906 N/A N/A
SLDPC 0.66 1.81 2.7 2.81

Table 6: Runtime comparison on cic-ids with various numbers of pairwise constraints (in seconds).

Algorithms 0.1n 0.2n 0.3n 0.4n 0.5n

LDP-SC 1.17 1.17 1.17 1.17 1.17
WECR k-means 2.02 2.45 2.35 2.27 2.35

E2CP 28.85 25.65 22.51 15.32 9.8
A-SSC 276.77 544.48 372.67 441.64 559.9
SLDPC 1.19 1.25 1.33 2.28 3.57

algorithms vary with increasing constraint numbers. It can be seen that the increment in512

runtime of SLDPC is small compared to the original LDP-SC algorithm and is competitive513

compared to other algorithms. For example, for cic-ids, the runtime of SLDPC is 2.7 seconds,514

and that of LDP-SC is 0.89 seconds, while A-SSC is 272.67 seconds and SSFPC and TLRR515

take too long (more than 5 hours) to obtain results. A similar phenomenon can also be516

observed on the pendigits data set. As shown in Table 6, when the number of pairwise517

constraints increases, the runtime of SLDPC increases in an acceptable scale, i.e., from 1.19518

seconds to 3.57 seconds, which is much shorter than that of A-SSC (over 200 seconds) and519

is consistently shorter than E2CP.520

7.2. Robustness521

For clustering algorithms, the performance evaluation criteria should not only consider522

the best state, but also refer to the stability under different parameters.523

Figure 8 shows the mean and standard deviation of ARI of each data set under different524

constraint numbers when the nearest neighbor number k is taken from 2 to 30. It can be seen525

28

2 6 10 14 18 22 26 30
k

0

20

40

60

80

100

AR
I

Pathbased

0.1n
0.2n
0.3n
0.4n
0.5n

2 6 10 14 18 22 26 30
k

0

20

40

60

80

100

AR
I

Compound

0.1n
0.2n
0.3n
0.4n
0.5n

2 6 10 14 18 22 26 30
k

0

20

40

60

80

100

AR
I

baobab
0.1n
0.2n
0.3n
0.4n
0.5n

2 6 10 14 18 22 26 30
k

0

20

40

60

80

100

AR
I

brea

0.1n
0.2n
0.3n
0.4n
0.5n

2 6 10 14 18 22 26 30
k

0

20

40

60

80

100
AR

I
mnist

0.1n
0.2n
0.3n
0.4n
0.5n

2 6 10 14 18 22 26 30
k

0

20

40

60

80

100

AR
I

Pendigits

0.1n
0.2n
0.3n
0.4n
0.5n

Figure 8: Robustness of SLDPC.

that k around 6 can be regarded as a cut-off point. When k < 6, the algorithm fluctuates526

greatly, and the overall result is not good. As k gradually increases from 2 to 6, the ARI527

shows an obvious increasing trend. When k > 6, the performance of the algorithm tends to528

be stable. It is worth noting that as the constraint number gradually increases from 0.1n529

to 0.5n, the ARI shows an increasing trend on all data sets, and the ARI curves become530

smoother, especially on the Pathbased data set. In other words, as the constraint number531

increases, the algorithm becomes more robust.532

7.3. Growth trend of performance533

In this section, we select four data sets (baobab, worldmap, semg, mfeat-kar) that still534

have a large room for performance improvement, to demonstrate the trend of the perfor-535

mance with larger constraint sizes. The range of the constraint numbers is enlarged from536

the previous 0.1n ∼ 0.5n to 0.1n ∼ 3n. For each constrain number, we randomly generate537

ten groups of pairwise constraints, and calculate the mean and standard deviation of ARI.538

Figure 9 depicts the ARI curve of the experiment. The performance of SLDPC continues539

to improve and becomes relatively stable after around 1.5n. This provides us an empirical540

experience that increasing the number of pairwise constraint information can effectively541

29

0.5n 1.0n 1.5n 2.0n 2.5n 3.0n
Size of Constraints

0

20

40

60

80

100

A
R

I

baobab
worldmap
segm
mfeat-kar

Figure 9: Growth trend of performance of SDLPC.

improve the clustering performance of SLDPC while maintaining good rate of improvement542

before reaching the constraint size of 1.5n.543

7.4. Analysis of the process of clustering544

In this part, we visualize the clustering process of SLDPC on the Pathbased dataset to545

analyze how each step of the proposed algorithm improves the final result. The number of546

nearest neighbors is set as k = 9.

1.5 1.0 0.5 0.0 0.5 1.0 1.5

2

1

0

1

2

0

1

2

3
4

5

6
7

8

9

10

11

12
13

14 1.5 1.0 0.5 0.0 0.5 1.0 1.5

2

1

0

1

2

0

1

2

3
4

5

6
7

8

9

10

11

12
13

14

0.1n

1.5 1.0 0.5 0.0 0.5 1.0 1.5

2

1

0

1

2

0.1n result

1.5 1.0 0.5 0.0 0.5 1.0 1.5

2

1

0

1

2

0.1n without E2CP

1.5 1.0 0.5 0.0 0.5 1.0 1.5

2

1

0

1

2

0

1

2

3
4

5

6
7

8

9

10

11

12
13

14
15

16

17

0.5n

1.5 1.0 0.5 0.0 0.5 1.0 1.5

2

1

0

1

2

0.5n result

1.5 1.0 0.5 0.0 0.5 1.0 1.5

2

1

0

1

2

0.5n without E2CP

Figure 10: Initial family trees and effects of intra-cluster conflict resolution.
547

Figure 10 (left) shows the constructed initial family trees at the first step of SLDPC,548

which are numbered from 0 to 14. It can be clearly seen that there is a clustering error549

inside the No.10 tree: some points in the banded area and some points in the the block area550

are merged into a same tree.551

30

Figure 10 (right) shows the result of family trees after intra-cluster conflict resolution552

with 0.1n and 0.5n constraint numbers. By observing the figure, we notice that as the553

constraint number increases, some errors are corrected and the clustering result becomes554

better, e.g., for 0.5n constraint number, the original No.10 tree is split into three subtrees555

with higher purity: the No.10, No.15 and No.17 trees.556

Although the purity of the trees is not improved when the constraint number is 0.1n, we557

can see from the middle column and the rightmost column that the constraint information558

has positive effects on the E2CP adjustment similarity stage. There are still some errors559

that are due to wrong trees and incorrect clustering of small subtrees. For example, the560

banded area on the right is correctly divided after E2CP, but due to the incorrect No.10561

tree, the banded area on the left is still not identified correctly. In the 0.5n case, the No.17562

subtree is a single sample point, which will be divided into a separate class at the stage of563

graph cut.564

1.5 1.0 0.5 0.0 0.5 1.0 1.5

2

1

0

1

2

0

1

2

3
4

5

6
7

8

9

10

11

12
13

14
15

0.1n

1.5 1.0 0.5 0.0 0.5 1.0 1.5

2

1

0

1

2

0

1

2

3
4

5

6
7

8

9

10

11

12
13

14
15

0.1n

1.5 1.0 0.5 0.0 0.5 1.0 1.5

2

1

0

1

2

0

1

2
3

4

5
6

7

8

9

10

11
12

13
14

0.1n

1.5 1.0 0.5 0.0 0.5 1.0 1.5

2

1

0

1

2

0

1

2

3
4

5

6
7

8

9

10

11

12
13

14
15

16

17

18

19

20

21

0.5n

1.5 1.0 0.5 0.0 0.5 1.0 1.5

2

1

0

1

2

0

1

2

3
4

5

6
7

8

9

10

11

12
13

14
15 16

0.5n

1.5 1.0 0.5 0.0 0.5 1.0 1.5

2

1

0

1

2

0

1

2
3

4

5
6

7

8

9

10

11
12

13
14

0.5n

Figure 11: Effects of inter-cluster conflict resolution, root node redirection and noise filtering.

In SLDPC, the inter-cluster conflict resolution, root node redirection and noise filtering565

steps are performed after the intra-cluster conflict resolution. The left, middle and right566

columns of Figure 11 respectively show the results of the subsequent inter-cluster conflict567

resolution, root node redirection and noise filtering of SLDPC under 0.1n and 0.5n constraint568

number based on Figure 10.569

31

1.5 1.0 0.5 0.0 0.5 1.0 1.5

2

1

0

1

2

0.1n without E2CP

1.5 1.0 0.5 0.0 0.5 1.0 1.5

2

1

0

1

2

0.1n result

1.5 1.0 0.5 0.0 0.5 1.0 1.5

2

1

0

1

2

0.5n without E2CP

1.5 1.0 0.5 0.0 0.5 1.0 1.5

2

1

0

1

2

0.5n result

Figure 12: Clustering results with and without E2CP.

Compared with Figure 10, the purity of trees is further improved. For example, in the570

0.5n case, the split that results in the No.18 and No.21 trees effectively resolved the conflicts,571

but more fragmented trees appeared. In the root node redirection stage, this situation has572

been greatly mitigated. Finally, after the noise filtering step, the fragmented trees no longer573

exist, and the purity of the obtained trees is maintained.574

After completing all the steps illustrated in Figure 11, the subtree aggregation step is575

finally executed. Figure 12 shows the clustering result of with and without the similarity576

adjustment step by E2CP method based on Figure 11. It can be seen that for both the577

number of 0.1n and 0.5n, E2CP improves the final result significantly, which has once again578

confirmed the effectiveness and necessity of this step.579

8. Conclusion580

We propose a semi-supervised clustering algorithm SLDPC. SLDPC utilizes pairwise581

constraint information to improve LDP-SC in two aspects: improving the purity of local582

trees and optimizing the original similarity matrix of local trees. SLDPC formulates the583

intra-cluster conflict resolution and inter-cluster conflict resolution steps to ensure that the584

established local trees are consistent with the pairwise constraint information. In order to585

avoid the trees being too fragmented, root node redirection and noise filtering steps are586

then designed to make the trees as large and pure as possible. In terms of similarity matrix587

adjustment, SLDPC employs the E2CP algorithm to optimize the similarity matrix. Ex-588

periments on twelve commonly used real-world datasets and two synthetic datasets show589

that the proposed algorithm is superior to other prominent clustering algorithms in most590

32

cases. The robustness analysis of hyper-parameters also shows that SLDPC has stable591

performance. While SLDPC demonstrates superior performance, it faces challenges when592

handling large datasets due to its complexity, and its density-based strategy limits its effec-593

tiveness for high-dimensional data. To explore a more efficient method of splitting trees for594

the inter-cluster conflict resolution stage and to devise similarity measures that characterized595

high-dimensional data more effectively may help further improve the algorithm.596

Declaration of Competing Interest597

The authors declare that they have no known competing financial interests or personal598

relationships that could have appeared to influence the work reported in this paper.599

Acknowledgment600

This work was supported by the National Natural Science Foundation of China [grant601

numbers 12231007, 11871353, 61806170], and the Fundamental Research Funds for the Cen-602

tral Universities [grant numbers 2682022ZTPY082, 2682023ZTPY027].603

References604

[1] A. K. Jain, Data clustering: 50 years beyond K-means, Pattern Recognition Letters 31 (2010) 651–666.605

[2] J. A. Hartigan, Clustering algorithms, John Wiley & Sons, Inc., 1975.606

[3] A. Y. Ng, M. I. Jordan, Y. Weiss, On spectral clustering: Analysis and an algorithm, in: Advances in607

Neural Information Processing Systems, 2002, pp. 849–856.608

[4] B. J. Frey, D. Dueck, Clustering by passing messages between data points, Science 315 (2007) 972–976.609

[5] U. von Luxburg, R. C. Williamson, I. Guyon, Clustering: Science or art?, in: International Conference610

on Machine Learning: Workshop on Unsupervised and Transfer Learning, 2012, pp. 65–79.611

[6] G. Yang, S. Deng, X. Chen, C. Chen, Y. Yang, Z. Gong, Z. Hao, Reskm: A general framework to612

accelerate large-scale spectral clustering, Pattern Recognition 137 (2023) 109275.613

[7] Y. Shi, Z. Chen, Z. Qi, F. Meng, L. Cui, A novel clustering-based image segmentation via density614

peaks algorithm with mid-level feature, Neural Computing and Applications 28 (2017) 29–39.615

[8] L. Sun, T. Ye, J. Sun, X. Duan, Y. Luo, Density-peak-based overlapping community detection algo-616

rithm, IEEE Transactions on Computational Social Systems 9 (2021) 1211–1223.617

33

[9] Z.-H. Deng, H.-H. Qiao, M.-Y. Gao, Q. Song, L. Gao, Complex network community detection method618

by improved density peaks model, Physica A: Statistical Mechanics and its Applications 526 (2019)619

121070.620

[10] B. Zhou, M. Shang, L. Feng, K. Shan, L. Feng, J. Ma, X. Liu, L. Wu, Long-term remote tracking621

the dynamics of surface water turbidity using a density peaks-based classification: A case study in the622

three gorges reservoir, china, Ecological Indicators 116 (2020) 106539.623

[11] A. Rodriguez, A. Laio, Clustering by fast search and find of density peaks, Science 344 (2014) 1492–624

1496.625

[12] Q. Zhang, Y. Dai, G. Wang, Density peaks clustering based on balance density and connectivity,626

Pattern Recognition 134 (2023) 109052.627

[13] A. Ng, M. Jordan, Y. Weiss, On spectral clustering: Analysis and an algorithm, Advances in Neural628

Information Processing Systems (2002) 849–856.629

[14] Z. Long, Y. Gao, H. Meng, Y. Yao, T. Li, Clustering based on local density peaks and graph cut,630

Information Sciences 600 (2022) 263–286.631

[15] J. E. van Engelen, H. H. Hoos, A survey on semi-supervised learning, Machine Learning 109 (2020)632

373–440.633

[16] Z. Lu, Y. Peng, Exhaustive and efficient constraint propagation: A graph-based learning approach and634

its applications, International Journal of Computer Vision 103 (2013) 306–325.635

[17] S. Basu, A. Banerjee, R. Mooney, Semi-supervised clustering by seeding, in: International Conference636

on Machine Learning, 2002, pp. 27–34.637

[18] H. Liu, Z. Tao, Y. Fu, Partition level constrained clustering, IEEE Transactions on Pattern Analysis638

and Machine Intelligence 40 (2017) 2469–2483.639

[19] B. Mirkin, Reinterpreting the category utility function, Machine Learning 45 (2001) 219–228.640

[20] F. Salehi, M. R. Keyvanpour, A. Sharifi, Smkfc-er: Semi-supervised multiple kernel fuzzy clustering641

based on entropy and relative entropy, Information Sciences 547 (2021) 667–688.642

[21] Z. Jiang, Y. Zhan, Q. Mao, Y. Du, Semi-supervised clustering under a compact-cluster assumption,643

IEEE Transactions on Knowledge and Data Engineering 35 (2022) 5244–5256.644

[22] K. Kamvar, S. Sepandar, K. Klein, D. Dan, M. Manning, C. Christopher, Spectral learning, in:645

International Joint Conference of Artificial Intelligence, 2003, pp. 561–566.646

[23] Z. Lu, M. A. Carreira-Perpinan, Constrained spectral clustering through affinity propagation, in: IEEE647

Conference on Computer Vision and Pattern Recognition, 2008, pp. 1–8.648

[24] Z. Li, J. Liu, X. Tang, Pairwise constraint propagation by semidefinite programming for semi-supervised649

classification, in: International Conference on Machine learning, 2008, pp. 576–583.650

[25] F. Nie, H. Zhang, R. Wang, X. Li, Semi-supervised clustering via pairwise constrained optimal graph,651

34

in: International Conference on International Joint Conferences on Artificial Intelligence, 2021, pp.652

3160–3166.653

[26] F. Nie, X. Wang, M. I. Jordan, H. Huang, The constrained laplacian rank algorithm for graph-based654

clustering, in: AAAI Conference on Artificial Intelligence, 2016, pp. 1969–1976.655

[27] Z. Wang, S.-S. Wang, L. Bai, W.-S. Wang, Y.-H. Shao, Semi-supervised fuzzy clustering with fuzzy656

pairwise constraints, IEEE Transactions on Fuzzy Systems 30 (2021) 3797–3811.657

[28] Z. Yu, P. Luo, J. You, H.-S. Wong, H. Leung, S. Wu, J. Zhang, G. Han, Incremental semi-supervised658

clustering ensemble for high dimensional data clustering, IEEE Transactions on Knowledge and Data659

Engineering 28 (2015) 701–714.660

[29] Z. Yu, P. Luo, J. Liu, H.-S. Wong, J. You, G. Han, J. Zhang, Semi-supervised ensemble clustering661

based on selected constraint projection, IEEE Transactions on Knowledge and Data Engineering 30662

(2018) 2394–2407.663

[30] Y. Lai, S. He, Z. Lin, F. Yang, Q. Zhou, X. Zhou, An adaptive robust semi-supervised clustering664

framework using weighted consensus of random k k-means ensemble, IEEE Transactions on Knowledge665

and data engineering 33 (2019) 1877–1890.666

[31] F. Yang, X. Li, Q. Li, T. Li, Exploring the diversity in cluster ensemble generation: Random sampling667

and random projection, Expert Systems with Applications 41 (2014) 4844–4866.668

[32] P. J. Rousseeuw, Silhouettes: a graphical aid to the interpretation and validation of cluster analysis,669

Journal of Computational and Applied Mathematics 20 (1987) 53–65.670

[33] L. Bai, J. Liang, F. Cao, Semi-supervised clustering with constraints of different types from multiple671

information sources, IEEE Transactions on Pattern Analysis and Machine Intelligence 43 (2020) 3247–672

3258.673

[34] W. Xia, H. Lu, Q. Wang, A. Tripathi, Y. Huang, I. L. Moreno, H. Sak, Turn-to-diarize: Online speaker674

diarization constrained by transformer transducer speaker turn detection, in: IEEE International675

Conference on Acoustics, Speech and Signal Processing, 2022, pp. 8077–8081.676

[35] A. M. Bagirov, S. Taheri, F. Bai, F. Zheng, Nonsmooth optimization-based model and algorithm for677

semisupervised clustering, IEEE Transactions on Neural Networks and Learning Systems 34(9) (2023)678

5517–5530.679

[36] Y. Jia, G. Lu, H. Liu, J. Hou, Semi-supervised subspace clustering via tensor low-rank representation,680

IEEE Transactions Circuits Systems for Video Technology 33 (2023) 3455–3461.681

35

	Introduction
	Related Work
	Semi-supervised clustering based on label information
	Semi-supervised clustering based on pairwise constraints

	Preliminaries
	LDP-SC
	E2CP
	Analysis of the problems of LDP-SC

	SLDPC stage 1: Building family trees based on pairwise constraints
	Building initial family trees
	Intra-cluster conflict resolution
	Inter-cluster conflict resolution
	Root nodes redirection

	SLDPC stage 2: Aggregating family trees based on constraint propagation
	Calculating similarity matrix
	Noise filtering
	Graph cut and clustering of trees
	Time complexity analysis

	Empirical Evaluations
	Experiment settings
	Results and analysis on synthetic data sets
	Results and analysis on real-world data sets

	Discussion
	Runtime comparison
	Robustness
	Growth trend of performance
	Analysis of the process of clustering

	Conclusion

