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ABSTRACT
People often use qualitative relations to describe locations or directional informa-
tion, especially in written communication, such as “the restaurant is located at the
southeast corner of the square”. However, when a large number of spatial entities
are involved, qualitative relations alone are not intuitive enough for people to under-
stand a spatial configuration. In fact, many applications, e.g., pertaining to sharing
travel experiences, use sketch maps, i.e., maps focusing on the main features of
an area whilst abstracting exact scale measurements, to help demonstrate abstract
qualitative relations with more intuitive geometric points. Current approaches for
generating point sketch maps from qualitative spatial relations require a high level of
expertise, face inherent difficulties with efficiently processing large-scale data in bulk,
and are vulnerable to inaccurate or conflicting information contained in qualitative
data. To address these limitations, by incorporating machine learning techniques,
we propose to translate the problem into an optimization problem of data recon-
struction, enabling a novel end-to-end approach for generating point sketch maps
from qualitative directional relations in bulk. Experiments on real-world datasets
show that the proposed approach has very high accuracy and is robust even with a
large portion of inaccurate or incomplete information.

KEYWORDS
qualitative directional relations; Laplacian Eigenmaps; point sketch map;
visualization

1. Introduction

Information technologies such as social media, cloud computing, and artificial intel-
ligence have greatly improved the capability of people to share, acquire, and analyse
map data. Web map services (Wu et al. 2011) provide us with a quantitative way
for describing and understanding a geographical entity. Meanwhile, qualitative spatial
relations are abundant in web documents (He et al. 2015) and social media (Stock
et al. 2022). For example, in social media, users often use qualitative spatial relations,
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like “on the east” and “to the northwest”, to describe directional information. An in-
creasing number of scholars also show interest in such relations and have incorporated
them into fields such as geographical information science (Egenhofer and Mark 1995,
Worboys and Duckham 2004), qualitative spatial reasoning (Cohn and Renz 2008),
computer vision (Zhan et al. 2020), computational geometry (Frontiera et al. 2008),
and biomedical research (Wang et al. 2022).

Motivation. While qualitative spatial relations have been extensively exploited in
geographical information processing as an abstract semantic layer, most of the exist-
ing works mainly directly use the existing qualitative relations or the ones calculated
from numerical data. Recent examples of such usage of qualitative spatial relations
include: locating POIs from descriptions involving not only place names but also their
qualitative spatial relations (Cheng et al. 2022), navigating in GPS-denied environ-
ments with the help of qualitative place maps (Hua et al. 2019), generating place
concepts by constructing spatial hierarchical relations from data (Wu et al. 2019), and
matching place names in different natural language descriptions by considering their
qualitative relations (Kim et al. 2017).

We note that existing geographical information systems (GISs) and location-based
services (LBSs) have more sophisticated techniques to deal with numerical data than
with qualitative relations, because the former are generally more informative and easier
to process. As a result, there is still a gap of integrating qualitative relations with cur-
rent numerical methods in the geographical context, that is, only very few works have
considered converting qualitative relations into numerical data, so that existing numer-
ical methods can better process such qualitative information. For example, Kim et al.
(2016) proposed to generate a picture depiction of qualitative relations between places
that can facilitate emergency responses, Belouaer et al. (2016) discussed generating
a map from verbal (qualitative) navigation instructions that can better demonstrate
the navigation knowledge, and Chen et al. (2018) considered georeferencing a place on
the map through its qualitative relations with landmarks.

In fact, we argue that the capability of converting qualitative relations into numer-
ical data can inspire new tools and techniques to analyse and visualize geographical
data, and will help systems and services that are based on numerical methods to pro-
cess qualitative information. For instance, although qualitative spatial relations alone
cognitively conform to human users, visual representations such as maps have stronger
intuitiveness and can benefit GISs so that they will become more user-friendly. Con-
sider the following example when we communicate with friends about a city:

There is a large gymnasium g to the north (N) of the city square s. To the west (W)
of the city square, there is a famous park p, which is located in the southwest (Sw) of the
gymnasium. Additionally, there is a famous tourist attraction t to the northwest (Nw)
of the park and to the west (W) of the gymnasium, while the southeast (Se) of the city
square is a famous business centre b.

Figure 1(a) lists the qualitative relations between these places, e.g. “g N s” means that
g is to the north of s. This large number of qualitative descriptions and relations are
not intuitive enough for people to have an overall picture of the distribution of those
places. A map (as shown in Figure 1(b)) that visually demonstrates the qualitative
relations would be arguably more intuitive.

Moreover, by converting qualitative relations to numerical data like points, one
can utilize advanced numerical methods for data analysis, e.g., performing topologi-
cal data analysis on the numerical data, as proposed in (Corcoran and Jones 2023).
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(a) (b) (c)

Figure 1. A motivational example of a point sketch map for qualitative directional relations: (a) Qualitative

directional relations between some places (ground truth, input); (b) Visual distribution of these places on a
real map; (c) A generated point sketch map for these places (prediction, our output).

This direction can also enhance spatial cognition by providing a more intuitive graph-
ical representation of data than a set of qualitative relations, e.g., GISs can visualize
the distribution of historical buildings by taking into account qualitative relations de-
scribed in historical books. It can also help to enrich the knowledge base of GISs, by
generating numerical data that align with the large amount of qualitative data ex-
isting in social media but not yet fully utilized by current systems. Other significant
implications include geographical registration, location restoration, and correction of
historical and modern maps. We will discuss more implications later in Section 6.

State of the art. Research on the quantitative conversion of qualitative spatial re-
lations has achieved some preliminary results, including visualization for location de-
scriptions (Wieczorek et al. 2004, Vasardani et al. 2013), for path descriptions (Moncla
et al. 2016), and for scene descriptions (Kim et al. 2016). However, some of these stud-
ies require quantitative spatial data to be known or partially known, while some require
qualitative descriptions of both distances and directions. Most of these studies rely on
complex computational algorithms designed with expert knowledge to obtain sketch
maps. As a result, the effectiveness and accuracy of these algorithms face great chal-
lenges when some information is fuzzy, inaccurate, or even missing. Moreover, these
methods mostly deal with only a small number of geographical entities, and there is
insufficient research on the quantitative conversion of numerous geographical entities
in bulk.

Main idea. To address the aforementioned issues, this article proposes an end-to-end
approach to obtain a point sketch map1 from qualitative directional relations. A point
sketch map is a set of points on the plane, where each point represents a geographical
entity (e.g., place) and the points are used to demonstrate the qualitative directional
relations among these entities. In sum, it utilizes a gradient descent algorithm guided
by a novel loss function to continuously optimize point sketch maps; this approach is
shown to be able to obtain a sketch map for a large number of geographical entities.
In detail, to obtain good point sketch maps, the proposed approach introduces the
Laplacian reconstruction loss (Niyogi and Belkin 2003) commonly used in the ma-
chine learning field to characterize neighbourhood information, and designs a novel
directional loss to characterize qualitative relation information. This approach does

1The concept of “sketch map” used here is slightly different from the common understanding in other fields,

such as spatial cognition, where it usually refers to hand-drawn intuitive pictures to depict ideas. Here, we
adopt this term for a map of points to capture the intuitiveness of the map and to emphasize that the map
aims to illustrate the qualitative relations between entities, rather than exact coordinates as with usual maps.
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not require strong expert knowledge, nor the design of complex computational formu-
las. Furthermore, it has a certain degree of fault tolerance and can deal with a large
number of geographical entities simultaneously. As an illustration, for the qualitative
directional relations shown in Figure 1(a), the proposed approach can obtain a point
sketch map as shown in Figure 1(c), which is very close to the true distribution in
Figure 1(b). In fact, with respect to fault tolerance, although the angles are not ex-
actly the same for these two figures, the qualitative relations are the same, e.g., the
angle between the vector ~sb (from point s to point b) and the x-axis in Figure 1(b)
is slightly smaller than 45◦, and in Figure 1(c) it is almost 45◦ resulting from the
numerical calculation of the approach, yet they maintain the same directional relation
Se.

It is worth noting that in this article we only consider cardinal directions, but there
exist other common types of directional relations, such as relative directions like front
and right. Cardinal directions are a well-known type of qualitative spatial relations
between geographical places, and many real-world applications including Wikipedia
are interested in this type of relations. Also, for geographical places, cardinal relations
can usually be easily obtained without further information other than normal geome-
tries, whereas obtaining relative directions requires the orientations of geographical
places which are usually not known. Nevertheless, the proposed idea might also be
useful for other types of relations, e.g., for relative directions, when the orientations of
reference points are known, one can consider that there is a cardinal direction system
for each reference point; thus, this setting does not limit the potential of the proposed
approach to deal with other types of relations.

Contributions. The main contributions of this article are:

(1) An end-to-end machine learning approach is employed to solve the problem of
generating point sketch maps from qualitative directional relations.

(2) In addition to the neighbourhood loss function, a novel qualitative directional
relation loss function is proposed to better preserve the qualitative directional
information.

(3) Experimental results indicate that the proposed method can achieve an average
accuracy rate close to 100% (and over 80% when there is up to about 20% of
noise), demonstrating that the proposed method provides an effective solution
for generating point sketch maps.

The proposed approach can also serve as a general framework of generating geome-
tries of spatial entities in accordance with their qualitative spatial relations, which can
be extended to support more complex geometries and other types of relations.

The rest of the article is organized as follows. Section 2 discuses related work.
Section 3 introduces preliminary knowledge. Section 4 describes the approach in detail.
Section 5 experimentally evaluates the proposed approach, in both a visual way and
a metrics way. Section 6 concludes the article and discusses implications, limitations,
and future work.

2. Related Work

The study of modelling quantitative information as qualitative directional relations has
been a focus of research for decades. For example, Frank (1992) introduced a cone-
shaped model and a projection model for directional relations. In the cone-shaped
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model, each direction is assigned a 45◦ fan-shaped acceptance region, and in the pro-
jection model, the directions on axes correspond to North, South, East, and West,
respectively, while the area between two directions correspond to the directional re-
lation between them, e.g., Northeast. Clementini (2013) proposed a qualitative rep-
resentation framework for directional information and frames of reference, using a
5-intersection model. Du et al. (2023) defined a logic system that describes the east,
west, and uncertain directions between points, providing a semantic interpretation
based on the margin of error and level of indeterminacy. These qualitative models of
different granularities and perspectives provide qualitative directional relations with
a semantic meaning that mimics human cognition. There are many other directional
relation models, and interested readers are referred to (Dylla et al. 2017).

Currently, researchers are increasingly interested in the fusion of qualitative direc-
tional relations and quantitative information to improve the performance of specific
tasks, such as matching points of interest (POIs) (Cheng et al. 2022), indoor local-
ization and navigation (Hua et al. 2019, Winter et al. 2019), and many others. For
example, Cheng et al. (2022) integrated qualitative directional relations and quanti-
tative distances into spatial reasoning, achieving localization of POIs through address
matching and spatial reasoning. They also accelerated directional relation retrieval
and improved the efficiency of spatial reasoning for large datasets by implementing
compact qualitative direction representations on global equal latitude and longitude
grids (Goodchild and Kimerling 2002). Winter et al. (2019) discussed infrastructure-
independent indoor navigation methods based on smartphones, including qualitative
interaction between users and devices, which are slightly less accurate but have the
potential for universal application. Hua et al. (2019) proposed a localization and nav-
igation method based on qualitative maps that represent important landmarks in the
environment and their spatial relations. These qualitative maps are then used for lo-
calization and navigation in GPS-weak or GPS-denied environments.

As one of the aspects for the interaction and fusion of qualitative and quantita-
tive directional information, quantitative conversion of qualitative directional relations
mainly involves visualizing directional relations described in text, by drawing sketch
maps of the distribution of multiple spatial entities, or of the approximate boundary
of a single spatial entity. Kim et al. (2016) considered to iteratively update sketch
maps that represent spatial relations between entities, by designing position update
formulas based on qualitative direction and distance information. Since each iteration
considers only a single spatial relation, this method requires continuous adjustment of
the positions of drawn objects, to avoid conflicts between newly added spatial entities
and existing ones. Belouaer et al. (2016) proposed a method for extracting and fusing
qualitative spatial relations from route descriptions and conducted preliminary tests
on visualizations of these relations using a genetic algorithm. However, this method
suffers from low efficiency and poor performance. Long et al. (2022) approximated
unknown boundaries of regions, by quantifying directional relations and distance in-
formation through complex formulas. This method also requires known positions of
some reference regions. Graullera et al. (2006) introduced a map construction method
for Aibo robots that can generate a basic topological map from image data collected
by the robots. This method is sensitive to noise and requires long computation time
and large memory space for processing large-scale maps. Schockaert et al. (2011) tri-
angulated the plane and used given qualitative topological relations to generate ap-
proximate boundaries of multiple regions based on a genetic algorithm. This method
requires elaborate algorithms and has high computational complexity, making it diffi-
cult to handle a large amount of spatial relations. As can be deduced from the above,
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existing studies can only conduct quantitative conversion for a very small number of
qualitative spatial relations between geographical entities, and usually require complex
calculations and a high level of expert knowledge. They also rely heavily on topological
relations and distance information, and have poor fault tolerance for noisy information.

There are various data reconstruction methods in the field of data mining and
machine learning, which can efficiently rearrange the spatial distribution of a large
number of data points, while maintaining some relations between the original data
points (such as similarity relations). For instance, Multidimensional Scaling (Cox and
Cox 2008, MDS) is a classical data reconstruction method, which reconstructs data
points in a lower dimensional space in such a way that the distance between every pair
of points in the lower dimensional space is close to that of the respective points in the
original space. Laplacian Eigenmaps (Niyogi and Belkin 2003, LE) is another typical
data reconstruction method, which plays an important role in dimensionality reduction
and visualization to achieve better clustering effects (Yin and Ma 2019). Compared to
MDS, which focuses on the distance for every pair of points, LE is concerned more with
local neighbouring information. This method and its variations, such as Locally Linear
Embedding (Roweis and Saul 2000, LLE) and Locality Preserving Projection (He and
Niyogi 2003, LPP), reconstruct high-dimensional data into low-dimensional data, while
attempting to maintain some local similarity between neighbours. By adopting the
above idea of data reconstruction, and to address the limitations of existing methods,
this article proposes an end-to-end method for quantitative conversion of qualitative
relations. The proposed approach does not require a high level of expertise, and only
relies on qualitative directional information to generate an intuitive point sketch map
for a large number of geographical entities. Specifically, a special loss function is used
to guide the quantitative reconstruction of qualitative directional relations, so that the
reconstructed points conform to the given relations as much as possible.

3. Preliminaries

3.1. Cone-Shaped Cardinal Directional Relations

Given a representative point p (here we use centroid) of a geographical entity, there can
be multiple qualitative directional relations of another point q relative to p (i.e., with
p as the reference point). Here, we are specifically concerned with the eight cardinal
directional relations provided by the cone-shaped directional relation model (Frank
1992, Peuquet and Ci-Xiang 1987). The cone-shaped relation model defines eight pos-
sible directional relations between a reference point p and a target point q on the plane,
i.e., North (N), Northeast (Ne), East (E), Southeast (Se), South (S), Southwest (Sw),
West (W), and Northwest (Nw). For these eight directional relations, the model uni-
formly partitions the plane into eight cone-shaped regions (as shown in Figure 2(a)),
known as the “regions of acceptance” for directional relations. If q falls inside the re-
gion of acceptance for a directional relation d, then the directional relation of q w.r.t.
p is defined to be d, i.e., (q Rqp p) = (q d p). For example, q falls within the region
of acceptance for Ne in Figure 2(a), and Rqp = Ne. It is worth noting that the cone-
shaped relation model is commonly used but is still just an approximation of human
cognition, e.g., it separates the plane into eight crisp regions, which can be error-prone
around the borders, i.e., a small change in position can lead to a different relation. In
general, this is the case with any qualitative model, as there is some inevitable loss of
information when abstracting metric data and forming more coarse-grained descrip-
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tions. Also, in this article, the standard 45◦ angle is chosen for each of the regions of
acceptance. This is because, when there is no further information, the eight directions
have equal importance, and the regions of acceptance should be evenly distributed.
In more general cases, one can use different angles for regions of acceptance, and the
essential idea proposed in this article still applies.

(a) cone-shaped cardinal direction rela-
tions

(b) conceptual neighbourhood graph

Figure 2. Cone-shaped cardinal direction relations and their conceptual neighbourhood graph.

Some relations are more “conceptually close” than others; intuitively, if we have a
reference point p and a target point q (p 6= q), and we assume that their directional
relation is R, viz., we have p R q, then by continuously changing the positions of p
and q, the relation R can directly transition to another relation S. Such S and R are
more “conceptually close” than other relations that do not have this property. This
leads to the well-known conceptual neighbourhood graph (Freksa 1996).

Definition 3.1 (Conceptual Neighbourhood Graph). The conceptual neighbourhood
graph for the cone-shaped cardinal directional relations is the undirected graph where:
the vertices are the relations, and two relations (vertices) have an edge if their respec-
tive regions of acceptance share a line border.

The conceptual neighbourhood graph for the eight directional relations is shown
in Figure 2(b). Two relations with an edge are said to be conceptual neighbours. For
example, N and Ne are conceptual neighbours while N and E are not. Moreover, we
can also define the conceptual neighbourhood distance (Condotta et al. 2008) between
two relations based on the conceptual neighbourhood graph.

Definition 3.2 (Conceptual Neighbourhood Distance). For two relations R and S in
the conceptual neighbourhood graph G, the conceptual neighbourhood distance d(R,S)
between R and S is the number of edges in a shortest path between R and S in G.

For example, d(N,Ne) = 1, d(N,E) = 2, and d(N,S) = 4, and the range of the
distance between two relations is [0, 4].

Given a set of points on the plane, according to the above relation model, we
can compute the qualitative directional relations among these points based on their
coordinates. For two points p and q, the directional relation of q relative to p can be
calculated as follows:

(1) As in (Deng and Li 2008), we can calculate the angle αpq between the vector
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from p to q and the x-axis direction using

αpq =



arctan ∆ypq
∆xpq

(∆ypq ≥ 0,∆xpq > 0)

90◦ (∆ypq > 0,∆xpq = 0)

180◦ + arctan ∆ypq
∆xpq

(∆xpq < 0)

270◦ (∆ypq < 0,∆xpq = 0)

360◦ + arctan ∆ypq
∆xpq

(∆ypq < 0,∆xpq > 0)

(1)

where ∆y
pq

= yq − yp and ∆x
pq

= xq − xp;
(2) The directional relation is then determined by comparing the angle value with

the angle range corresponding to each directional relation.

For the example in Figure 2(a), αpq = 31.65◦ and the angle range of Ne is [22.5◦, 67.5◦).
Therefore, the directional relation Rqp of q relative to p is Ne.

3.2. Laplacian Eigenmaps

Laplacian Eigenmaps (LE) proposed in (Niyogi and Belkin 2003) is a data recon-
struction method targeting to preserve local similarity information of original data.
Its essential idea is: if two data instances pi and pj (which can be considered as two
points in Euclidean space) have high similarity in the original space, then their re-
constructed results p′i and p′j should also be close in distance, thereby preserving the
local similarity information. This idea is implemented in the LE model by designing a
specific loss function.

Particularly, let the original data set be represented as P = {p1, p2, . . . , pn}, where
a data point pi ∈ Rm in P is an m-dimensional row vector. The similarity between pi
and pj is given by Wij . Suppose the reconstructed data points of pi and pj are p′i and
p′j , where p′i, p

′
j ∈ Rd (d is the target dimensionality). Then, the loss function of LE is:

n∑
i=1

n∑
j=1

Wij‖p′i − p′j‖2. (2)

In this way, for a pair of data points pi and pj with high similarity (Wij is large),
in order to minimize the loss, ‖p′i − p′j‖2 should be as small as possible, i.e., the

reconstructed points p′i and p′j should be as close as possible.

Note that if the above model is optimized without constraints, then all p′i and p′j
will be compressed into a single point, so that the value of the loss function is the
minimum 0. To avoid that, LE adds the additional constraint P ′TDP ′ = I, where
P ′ = (p′1; . . . ; p′n), D is an n×n diagonal matrix and Dii =

∑n
j=1Wij . Intuitively, this

constraint requires that P ′ should be roughly orthogonal: each column (p′1j , . . . , p
′
nj)

T

of P ′ is orthogonal with other columns by a weighted factor of D, i.e.,
∑n

i=1Diip
′
ijp
′
ik =

0 (j 6= k), and
∑n

i=1Dii(p
′
ij)

2 = 1.
The procedure of data reconstruction using LE is as follows.

(1) Obtaining the nearest neighbour structure:
(a) ε-neighbour: if ‖pi − pj‖ < ε, then pj is a neighbour of pi.
(b) k-nearest neighbour: if pi is one of the k-nearest neighbours of pj , or pj is

one of the k-nearest neighbours of pi, then pj is a neighbour of pi.
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(2) Computing the similarity between two points that are neighbours of each other:
The commonly used similarity measure can be obtained by calculating the Gaus-

sian kernel function Wij = exp(−‖pi−pj‖
2

σ2 ), where σ controls the width of the
Gaussian function and determines the range of distance values that should be
significant to the similarity values (see (Romeny 2003) and also the supplemen-
tary material for more details).

(3) Solving the optimization problem in Equation 2 with the constraint P ′TDP ′ = I:
(a) This problem can be reformulated as a Lagrangian function, whose so-

lution is equivalent to a solution of the generalized eigenvalue problem
Ly = λDy (Niyogi and Belkin 2003); here, L is the Laplacian matrix
L = D −W ;

(b) The solutions are (usually) formed by the corresponding eigenvectors of the
first m′ non-zero smallest generalized eigenvalues for Ly = λDy (where m′

is the target reconstruction dimensionality);
(c) The m′ eigenvectors are concatenated column-wise to form a matrix P ′,

and the i-th row of P ′ is the reconstructed point of the original point pi.

4. Approach

In this article, we focus on generating point sketch maps for directional relations,
which are a well studied and utilized form of qualitative spatial relations (Ligozat
2013). Let V = {v1, . . . , vn} be a set of n geographical entities. For each vi ∈ V , there
are some other entities vi1 , . . . , viki

∈ V , whose qualitative directional relations with

respect to vi are known. Let N+(vi) = {vi1 , . . . , viki
} be the set of directed neighbours

of vi. Then R(vi) = {(vj Rji vi) | Rji ∈ {N,Ne,E,Se,S,Sw,W,Nw}, vj ∈ N+(vi)} is
the set of directional relations between vi and its directed neighbours. For instance,
(vj N vi) denotes that vj is to the north of vi. Note that these directional relations are
just text descriptions, whose semantic meaning might not exactly be the cone-shaped
qualitative directional relations defined in Section 3.

Problem Formulation The problem of generating a point sketch map from qualita-
tive directional relations studied in this article is formalized as follows:

• Input: a set of geographical entities V = {v1, . . . , vn} whose geometric informa-
tion might not be known, and R =

⋃
vi∈V R(vi), i.e., information about direc-

tional relation between geographical entities (as defined earlier);
• Output: A point sketch map of the geographical entities in V on the two-

dimensional plane, where each vi is mapped onto a unique point pi = (xi, yi) on
the plane.
• Objective: For any vi and vj ∈ N+(vi), the points pi and pj in the sketch map

should preserve the directional relations between vi and vj as much as possible.

In other words, given two geographical entities vi and vj , if the directional relation
of vj to vi is Rji and in the sketch map their corresponding points are pi and pj ,
then it is desired that the qualitative directional relation R∗ji between pi and pj is
“conceptually close” to Rji (see Definitions 3.1 and 3.2).

To achieve good reconstruction results, there are two types of information that are
very important and need to be preserved as much as possible: one is the neighbour-
hood information, and the other is the qualitative directional relation information. The
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neighbourhood information tells us which entities should be neighbours in the sketch
map, so that the relative distance between originally adjacent entities is maintained;
and the qualitative directional relation information tells us what kind of directional
relations the entities should have in the sketch map.

To this end, the general idea is first to randomly generate points (xi, yi); then
combine the idea of data reconstruction of LE to construct a neighbour loss, and
design a new qualitative directional relation loss to preserve important information;
and finally minimize the loss function by gradient descent optimization, to obtain the
final point sketch map of the entities in V . The following subsections discuss the above
steps in detail.

4.1. Neighbour Loss

In the field of machine learning, LE is a data reconstruction method commonly used
to preserve the neighbourhood information between data points. The main idea of LE
is to make similar points (or points with close distances) closer to each other after
reconstruction, so that the neighbourhood information can be better maintained.

Inspired by this idea, to preserve the neighbourhood information among the entities
in the sketch map, this article first establishes an initial neighbour structure using the
given qualitative directional relation set R and constructs the corresponding similarity
matrix W . Given two entities vi and vj , Wij = 1 if (vjRjivi) ∈ R(vi), and Wij = 0
otherwise. In other words, Wij for vi and vj is 1 if the directional relation between them
is given in the relation set. The reason for doing so is to highlight the difference between
neighbouring and non-neighbouring entity pairs during the optimization process, and
to facilitate the preservation of proximity of entities. Note that in this article, as only
directional relations are assumed to be available for the proposed approach, we consider
the points that are interrelated as neighbours of one another; this assumption may not
be true in general, but we have found it to work well in our setting, because to a certain
extent it well captures real-world neighbourhood information, as is the case with our
dataset. For example, one would position/describe a small village with respect to some
nearby town, or another village, rather than a capital that could be in the other part of
the country. Of course, in situations where additional information is available, such as
distance information, W can be further refined to more precisely reflect the neighbour
structure of entities. Since this article focuses more on the effectiveness of the idea,
this extension will not be deeply discussed here.

Subsequently, inspired by the loss function of LE, neighbour loss is constructed as:

n∑
i=1

n∑
j=1

Wij‖pi − pj‖2. (3)

By minimizing the neighbour loss, we can obtain a point sketch map that preserves
the neighbourhood information. Other approaches could also work when sufficient
information is available. For example, Multidimensional Scaling (Cox and Cox 2008,
MDS) tries to maintain the distance in a lower dimensional space, for every pair of
points in the original space, by minimizing

∑n
i=1

∑n
j=1(‖pi − pj‖ − dij)2 (dij is the

given distance between entities vi and vj). This is different from LE in that LE does
not maintain the distances but tries to keep similar points still close to each other
after reconstruction.

However, neighbour loss alone is not enough for a good result, as preserving the
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neighbour information does not necessarily ensure the preservation of qualitative direc-
tional relations. For example, Figure 3(a) depicts the actual distribution of coordinate
points for some geographical entities, while Figure 3(b) shows the point sketch map
obtained using only the neighbour loss. From the figure, it can be observed that al-
though the generated points are relatively close to each other, the directional relations
based on the reference point of “St Aubyn” do not agree with the original relations.
For example, “Thornville” was originally to the west of “St Aubyn”, i.e., (“Thornville”
W “St Aubyn”), but it becomes E or Ne in the sketch map. Similar inconsistencies in
the qualitative directional relations can also be observed for “Emu Creek” and “Mount
Binga”.

(a) Visual distribution of place names on a real
map

(b) Generated point sketch map

Figure 3. An example of the problem of generating point sketch maps using only the neighbourhood loss for
optimization.

4.2. Qualitative Directional Relation Loss

For any vi ∈ V and a neighbour vj ∈ N+(vi), suppose the generated points in a sketch
map are pi = (xi, yi) and pj = (xj , yj), respectively. To quantify the consistency of the
qualitative directional relations, in this article we first quantify an input qualitative

directional relation, by setting a canonical vector
−→
dR for each directional relation R ∈

{N,Ne,E,Se, S, Sw,W,Nw}, as shown in Figure 4. For example, the canonical vector
−→
dE of E is (1, 0), and

−→
dSw = (−1,−1).

Figure 4. The canonical vectors of qualitative directional relations.

Then the qualitative directional relation of pj to pi in the sketch map is quantified
by using the vector −−→pipj , and the degree of consistency can be computed by comparing

the difference with the vector
−→
dR, where R corresponds to the original directional
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relation between pi and pj , which can be characterized by the cosine value of the angle
between them:

cos(−−→pipj ,
−−→
dRji

) =
pj − pi
‖pj − pi‖

·
−−→
dRji

‖
−−→
dRji
‖
. (4)

A larger cosine value corresponds to a smaller angle, indicating that the difference
between −−→pipj and the canonical vector is smaller, and the reconstruction is more con-
sistent with the given qualitative direction relation. Thus, we propose the following as
the overall qualitative directional relation loss:

−
n∑
i=1

iki∑
j=i1

pj − pi
‖pj − pi‖

·
−−→
dRji

‖
−−→
dRji
‖
. (5)

4.3. Model and Algorithm

Taking both losses into consideration, we propose to model the problem of generating
a point sketch map from qualitative directional relations as the following optimization
problem:

argmin
p1,...,pn

n∑
i=1

n∑
j=1

Wij‖pi − pj‖2︸ ︷︷ ︸
Neighbour Loss

−λ
n∑
i=1

iki∑
j=i1

〈 pj − pi
‖pj − pi‖

,

−−→
dRji

‖
−−→
dRji
‖
〉︸ ︷︷ ︸

Qualitative Directional Relation Loss

. (6)

Note that for the “Neighbour Loss”, smaller values are better, while for the summation
term in “Qualitative Directional Relation Loss”, as it is a summation of cosine values,
larger values are better. So in the optimization problem we subtract the latter from
the former and take the argmin. Here, we also introduced a weight λ to balance the
“Neighbor Loss” and “Qualitative Directional Relation Loss”.

Compared to the classical LE, the objective function in Equation 6 is more complex
and cannot be directly solved by spectral decomposition. Instead, we consider using a
gradient descent algorithm (Amari 1993): we first randomly initialize the coordinates
of the points, and then the coordinates of the points are iteratively updated based
on the gradient direction of the loss function. Different gradient descent methods
exist, such as stochastic gradient descent method, batch gradient descent method, and
Adam gradient descent method (see (Ruder 2016) for a more detailed introduction). It
is worth noting that none of these gradient descent methods can guarantee finding the
global optimal solution. Nevertheless, gradient descent methods have been widely used
to approximately solve optimization problems, such as optimizing neural networks.
Generally, the updating of coordinates can be done by the standard gradient descent
method:

P := P − α5L(Pn×2,R)

5P
, (7)

where the learning rate α determines the step size of each gradient descent step. In
the experiments, we implement the algorithm with a commonly used extension of
the standard gradient descent method, called Adaptive Moment Estimation (Adam)
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by (Kingma and Ba 2014), which can adaptively control the learning rate and have
better convergence guarantee.

By iteratively updating the current solution, gradient descent finds a solution that
minimizes the objective function locally. However, note that the second term of the
loss function is only related to the directions of the vectors, which has scale invariance,
that is, scaling up or down the coordinates of the data points by a constant factor
will not affect its value. On the other hand, the first term of the loss function prefers
to have pairs of points with non-zero similarity value Wij be constructed as close as
possible. Therefore, by combining the two terms in the loss function, the data points
tend to be over-compressed when being very close to one another, which is not desired.

Traditional LE prevents over-compression by adding a weighted orthogonal con-
straint to the optimization problem. The proposed model can also apply a similar
constraint, which essentially normalizes the coordinates of the points, but will distort
the distribution of the points. Two other options can be used to stop the updating
of coordinates before over-compression: (1) the second term of the loss no longer de-
creases with respect to a threshold, and (2) the number of iterations exceeds a given
number. In this article, the second method is used to stop the updating by controlling
the number of iterations, and in practice one can choose other stopping criteria (like
a combination of the two aforementioned methods) as appropriate.

The proposed steps to generate a point sketch map is shown in Algorithm 1. The
input of the algorithm is a set of qualitative directional relations among n = |V |
entities R = {(vjRjivi)|Rji ∈ {N,Ne,E, Se,S,Sw,W,Nw}, vi ∈ V, vj ∈ N+(vi)}, and
the output is an n× 2 matrix, where the i-th row corresponds to the generated point
of the i-th entity.

Algorithm 1: Point Sketch Map Generation Algorithm

Input: A set R of qualitative directional relations between n geographical
entities, a set D of the canonical vectors (see Figure 4), number of
iterations K, and initial iteration number epoch.

Output: A matrix Pn×2 of generated points
1 Randomly generate an n× 2 matrix Pn×2;
2 foreach epoch ∈ (1, 2, . . . ,K) do

3 L ← (
∑n

i=1

∑n
j=1Wij‖pi − pj‖2 − λ

∑n
i=1

∑iki

j=i1
〈 pj−pi
‖pj−pi‖ ,

−−→
dRji

|
−−→
dRji
|
〉);

// Compute the loss using the P obtained in the previous

step.

4 P ← P − α5L(Pn×2,R)
5P ; // Compute the gradient of L with respect

to P, and update P using gradient descent.

5 return Pn×2;

5. Experimental Analysis

5.1. Datasets and Settings

To evaluate the proposed approach, we would need some ground-truth points corre-
sponding to geographical entities and qualitative directional relations between these
entities. The dataet of ground-truth points (GEO) in this article consists of the cen-
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troids of some suburbs in Australia, derived from the Australian Bureau of Statistics.2

Figure 5(a) illustrates the distribution of some points in GEO.

(a) (b)

Figure 5. Illustration of the datasets: (a) Some ground-truth points in GEO; (b) An infobox representation

of neighbours and qualitative directional relations.

There are two sources of qualitative directional relations used in our experiments:
the ones calculated from the points in GEO by a relation model (GEO-REL), and the
ones annotated by users (WIKI-REL). The first source can be regarded as having no
noise or errors (at least with respect to the centroids of Australian suburbs), and having
stable semantic interpretations of the relations, which is mainly used to verify the
effectiveness of the proposed approach and to establish an upper bound. In this article,
we use the cone-shaped model in Section 3.1 to calculate the qualitative directional
relations between each point and its neighbours to obtain the data set GEO-REL.

The second source, however, contains some noise and errors, and has varying seman-
tic interpretations of the relations, as they are annotated by different users. It is mainly
used to verify the robustness and the ability of the approach in dealing with inaccurate
information. In this article, the data set of annotated qualitative directional relations
is from the DBpedia3 collection of Wikipedia infobox data. An infobox contains a
3 × 3 table that describes the qualitative directional relations between neighbouring
place names, where the central cell represents the reference place name, and the eight
surrounding cells correspond to the eight directional relations respectively (e.g., Nw,
Se). As shown in Figure 5(b), the entity “Abbotsbury” has “Horsley Park” as its
northwestern (Nw) neighbour and northern (N) neighbour, and “Bonnyrigg Heights”
as its southeastern (Se) neighbour. Figure 5(a) also illustrates the ground-truth points
corresponding to these entities in GEO.

Note that the aforementioned GEO-REL datasets use the centroids of the places
from Wikipedia, but the places actually have much more complex polygon shapes
than a single point. This simplification may result in mismatched cardinal directions
between the same pair of places in these two datasets, as the cardinal direction between
polygons could be different from the one between two points in these polygons (Regalia
et al. 2016). Nevertheless, here we consider this difference as a source of noise to verify
that this approach can deal with inaccurate information.

An infobox may contain multiple directional relations between the same pair of
entities, such as “Horsley Park” and “Abbotsbury” in Figure 5(b). Therefore, for the

2https://www.abs.gov.au/statistics/standards/
3https://www.dbpedia.org/
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sake of convenience of comparison, in WIKI-REL, for each pair of entities, we only
keep the directional relation which is conceptually closest to the calculated directional
relation in GEO-REL, i.e., the relation with the smallest distance (Definition 3.2)
to the relation in GEO-REL. For example, Table 1 shows the directional relations
between “Abbotsbury” and its neighbours in GEO-REL and WIKI-REL after this
pre-processing. We can see that the relation N between Horsley Park and Abbotsbury
is removed in WIKI-REL while Nw is kept.

Table 1. Qualitative directional relations between “Abbotsbury” and its neighbours in WIKI-REL and GEO-

REL.

Name Neighbour WIKI-REL GEO-REL

Abbotsbury

Horsley Park Nw Nw
Bossley Park Ne E
Edensor Park E Se

Bonnyrigg Heights Se Se
Cecil Hills Sw Sw
Cecil Park W W

Finally, we select four subsets of entities, such that each entity in a subset has at
least one neighbour, forming four subsets of GEO-REL and four subsets of WIKI-REL,
as shown in Table 2. In the table, we also include a column called “consistency rate”
which represents the proportion of direction relations in a dataset that are consistent
with those in GEO-REL. This reflects the inaccuracy of the directional relations in the
corresponding dataset, where a lower consistency rate indicates greater inaccuracy.

Table 2. Datasets extracted from WIKI-REL and GEO-REL.

Dataset #Names #Relations Consistency Rate
GEO-REL-1 148 653 100
GEO-REL-2 146 651 100
GEO-REL-3 125 558 100
GEO-REL-4 137 593 100
WIKI-REL-1 148 653 81.32
WIKI-REL-2 146 651 83.72
WIKI-REL-3 125 558 74.55
WIKI-REL-4 137 593 72.18

The experiments are conducted on a computer with an AMD-EPYC-7763 2.45GHz
CPU, NVIDIA 3090Ti GPU, and an Ubuntu 20.04 system with Python 3.9 and Py-
Torch 2.0.0. The parameters are set as follows. The weight λ in the loss function
balances the effect of the two loss terms in Eq. 6, and, as the main objective is to
optimize the relation loss, we give more focus on it and hence set λ to 10. The num-
ber of iterations controls when the optimization should be stopped. Based on our
observations, the loss values for the used datasets usually start to converge after 1 000
iterations, so to ensure sufficient optimization we set universally K = 5 000. The Adam
algorithm in PyTorch is used, instead of the standard gradient descent method, and
the learning rate α is set to 0.01 as is common practice. The initial randomly generated
point coordinates are in the range of [0, 1).
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5.2. Intuitive Evaluation of Point Sketch Map Generation

To intuitively evaluate the effectiveness of the proposed point sketch map generation
approach, we will visually compare the generated point sketch maps of GEO-REL and
WIKI-REL with the distribution of the ground-truth points in GEO. Please note that
a metrics-based evaluation follows immediately after, and with the intuitive evaluation
here we aim to help the reader to better grasp the results of our approach.

5.2.1. Point Sketch Maps of GEO-REL

Figure 6. A case study of point sketch map generation for GEO-REL-4. Left is the sketch map, and right is

the ground-truth points.

To conserve space, we only show results for GEO-REL-4, as qualitatively similar
results were obtained for GEO-REL-1/2/3 (see the supplementary material for the
remaining results). From the overall distribution of points in Figure 6, the proposed
approach well preserves local neighbouring information and qualitative directional re-
lations. The neighbour loss and the qualitative directional relation loss help to avoid
cases where non-neighbouring points are too close and directional relations are dis-
torted among neighbouring points. It is worth noting that although only the relations
between local neighbours are given, due to the transitivity of relation constraints, the
positions between non-neighbours are also mutually constrained. For instance, when B
is east of A and C is east of B, the positions of A and C are constrained by each other
even if there is no relation between them, e.g., C cannot be to the west of A, otherwise
the relation between C and B will be violated. In fact, our additional experiments
on fewer available relations show that this approach can perform well even when the
relational information is severely limited, e.g., it can still have an accuracy over 0.8
after removing 40% of the relations in the GEO-REL datasets (see the supplementary
material for details).

In terms of the point distribution around specific points, Figure 7 shows the sketch
maps of two reference place names and their neighbours in GEO-REL-4. The reference
point 26 has 6 neighbours, and the qualitative directional relations between them given
in GEO-REL-4 are: 8 Nw 26 (8 is in the northwest direction of 26), 9 W 26, 25 Ne 26,
27 W 26, 43 E 26, and 44 Se 26. From the figure, it can be seen that these qualitative
directional relations are well-preserved by the approach. For example, point 8 does fall
in the Nw direction of point 26, and the direction between point 43 and point 26 is also
very close to the given E. On the other hand, the reference point 85 has 4 neighbours,
and the qualitative directional relations between them given in GEO-REL-4 are: 47 W
85, 84 Ne 85, 86 W 85, and 105 Se 85. Most of the qualitative directional relations are
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also well-preserved in the sketch map (marked as circled points), e.g. point 47 does
fall in the west direction of point 85, and the direction between point 84 and point 85
is also very close to the northeast direction. However, the direction between point 86
(marked as a crossed point) and point 85 has a small deviation from the given direction
W, and is closer to Nw instead. Nevertheless, this deviation is within an acceptable
range in terms of human cognition.

Figure 7. A detailed inspection on the point sketch map of GEO-REL-4. (a) An example where all directional

relations in the sketch map are correct; (b) An example where one directional relation in the sketch map is

wrong.

5.2.2. Point Sketch Maps of WIKI-REL

Figure 8. A case study of point sketch map generation for WIKI-REL-4. Left is the sketch map, and right is

the ground-truth points.

Figure 8 shows the generated point sketch map of WIKI-REL-4 and the corre-
sponding distribution of ground-truth points in GEO (results for WIKI-REL-1/2/3
are qualitatively similar and can be found in the supplementary material). Note that
even though the relation consistency rate of WIKI-REL-4 is 72.18% due to inaccuracy
and inconsistency introduced by users, the overall result still shows that the proposed
approach can maintain the neighbour information and qualitative directional relations
to a good extent.

In Figure 9, we selected three cases to investigate in more depth: (a) All directional
relations are correct in the sketch map. The qualitative directional relations between
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point 108 and its surrounding neighbours in WIKI-REL-4 are: 78 N 108, 88 Nw 108,
89 Se 108, and 90 Sw 108. (b) Few directional relations are wrong in the sketch map.
The qualitative directional relations between point 85 and its surrounding neighbours
in WIKI-REL-4 are: 47 W 85, 84 Ne 85, 86 Nw 85, and 105 E 85. However, in the
generated point sketch map, point 105 is more to the southeast of point 85, and the
actual difference from the original relation E is small. (c) Most directional relations
are wrong in the sketch map. The qualitative directional relations between point 11
and its surrounding neighbours in WIKI-REL-4 are: 3 Nw 11, 4 W 11, 12 Sw 11, 19
N 11, 20 Ne 11, 21 E 11, and 22 Se 11. In the sketch map, some relations are slightly
offset, such as point 20, which is more towards the E direction of point 11, but the
offset is still acceptable. This might be because some relations in the data are not very
accurate (Table 2), which causes some points in the sketch map to be placed at wrong
positions, and in turn makes the method incapable of placing other points at the right
positions. Moreover, as we will show in the evaluation later on, our sketch maps often
fall under cases (a) and (b). This further illustrates that our method is effective even
when the given qualitative information is less accurate.

Figure 9. A detailed inspection on the point sketch map of WIKI-REL-4. (a) An example where all directional
relations in the sketch map are correct; (b) An example where one directional relation in the sketch map is

wrong; (c) An example where most of the relations are wrong in the sketch map.

5.3. Metrics-based Evaluation of Point Sketch Map Generation

Note that once the points for geographical entities are obtained by the algorithm,
we can use the obtained points to calculate the directional relations with the cone-
shaped model as detailed in Section 3.1. Then the performance can be evaluated by
comparing the relations from the sketch map with the ground-truth ones. The following
two metrics are selected for evaluation: “accuracy rate” and “total error distance”. The
metric “accuracy rate” (ACC) refers to the proportion of correctly preserved relations
to the total number of relations in the dataset. The “error distance” of a relation
from the sketch map to the ground-truth one refers to the conceptual neighbourhood
distance (see Definition 3.2) between these two relations. Note that the range of the
error distance for a single relation is [0, 4]. The “total error distance” of a whole point
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Table 3. Metrics for generated point sketch maps of GEO-REL and WIKI-REL datasets.

Datasets
GEO-REL Datasets WIKI-REL Datasets

1 2 3 4 1 2 3 4
#Names 148 146 125 137 148 146 125 137

#Relations 653 651 558 593 653 651 558 593
#Correct/#Incorrect 646/7 644/7 550/8 574/19 556/97 564/87 489/69 507/86
Total Error Distance 7 7 8 19 99 87 69 87

ACC (%) 98.93 98.92 98.57 96.80 85.15 86.64 87.63 85.50

sketch map is the sum of the distances between all relations from the sketch map and
their corresponding ground-truth relations.

Table 3 quantitatively presents the quality of the generated point sketch maps for
GEO-REL-1/2/3/4 and WIKI-REL-1/2/3/4. For GEO-REL datasets, compared to
the calculated directional relations based on points from GEO, the results show that
the proposed approach has an accuracy of nearly 100%. Moreover, the error distance of
each wrong relation does not exceed 1 (note that the range of error distance of a single
relation is [0, 4]). For example, a ground-truth relation W might have become Nw in the
sketch map, which however is usually acceptable in many real-world applications. In
addition to what is presented in Table 3, the average error in angles, when comparing
the generated point sketch maps with the original points, is about 9.5◦ for GEO-REL
datasets and 11.6◦ for WIKI-REL datasets.

For WIKI-REL datasets, compared to the provided relations in infoboxes, the ac-
curacy is in the range between 85.15% and 87.63%. Regarding the error distance, we
note that most of the incorrect relations have an error distance of 1, and only very
few have an error distance of 2, indicating that the offset of the incorrectly demon-
strated relations is small. It is worth noting that the annotated directional relations
in the WIKI-REL datasets are originally not accurate enough, having a consistency
rate of about 80% (as shown in Table 2). This indicates that the proposed approach
can accurately preserve the qualitative directional relations within distance 1, which
is acceptable in many real-world scenarios, and thus reflects the practical value of this
method.

As a more specific illustration, Figure 10 presents the detailed numbers of cor-
rect/incorrect relations for each entity and its neighbours in GEO-REL-4 (see the
supplementary material for the remaining results). The height of each bar represents
the total number of relations for the corresponding entity, with the grey portion indi-
cating the number of incorrect relations and the white portion indicating the number
of correct relations. The results show that for each entity with incorrect directional
relations, the number of incorrect relations is actually small (no more than 2 for this
dataset).

Figure 11 presents the detailed numbers of correct/incorrect relations for each entity
and its neighbours in WIKI-REL-4 (see the supplementary material for the remaining
results). The results show that most of the qualitative directional relations between
entities can be correctly demonstrated. There are individual entities with more incor-
rect relations (≤ 4), but the error distances are small (most of the distances are 1 and
only one is 2). Overall, the proposed approach can preserve the qualitative directional
relations well even with inaccurate directional information.
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Figure 10. Correctly/incorrectly preserved directional relations compared to the original ones for each entity

in GEO-REL-4.

Figure 11. Correctly/incorrectly preserved directional relations compared to the original ones for each entity

in WIKI-REL-4.

5.4. Comparison with Baselines

Following the discussion in Section 2, the methods below are chosen as baselines for
generating sketch maps, in order to obtain an as-complete-as-possible view across
different techniques for solving our novel problem; clearly, and as we detail below, we
had to adapt these techniques to our problem formulation.

• Kim (Kim et al. 2016): This method iteratively generates objects and dynam-
ically adjusts their positions and sizes to satisfy new relations. Note that this
method is originally designed for generating sketch maps with rectangles instead
of points, and we re-implement its idea for generating sketch maps of points.
• Belouaer (Belouaer et al. 2016): This method makes use of a genetic algorithm

to generate sketch maps of points. Following (Belouaer et al. 2016), we use a
matrix of size n × 2 to represent the points, and the population consists of 100
such matrices as individuals. We use the best individual as the final points after
100 generations.
• SparQ (Wolter and Wallgrün 2012): This is a qualitative spatio-temporal rea-

soner that can obtain a quantitative instantiation of variables (e.g., points) that
satisfies a given set of relations. It is worth noting that SparQ uses a different di-
rectional relation model as in this article, viz., the projection-based model (Frank
1992). For example, N holds when the reference point and the target point are on
the y-axis, which is a stricter requirement than when considering a region of ac-
ceptance as in the considered model here. Therefore, directly using the relations
in the datasets can create inconsistencies and make SparQ fail to find a solution
(clearly, the two models do not generally align). So we used the relation model
in SparQ to first re-calculate the relations between the ground-truth points in
GEO, and then use the new datasets (GEO-REL-SparQ) to compare with the
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Table 4. ACC metrics for different methods on GEO-REL and WIKI-REL datasets. Note that SparQ used

a different relation model for the directional relations.

Method
GEO-REL Datasets WIKI-REL Datasets

1 2 3 4 1 2 3 4
Ours 98.93 98.92 98.57 96.80 85.15 86.64 87.63 85.50
Kim 47.17 42.24 45.34 45.70 42.57 43.47 43.01 44.18

Belouaer 15.47 15.48 16.00 16.26 15.48 15.42 15.72 15.67
SparQ 100.00 100.00 100.00 100.00 - - - -

proposed approach on the original GEO-REL datasets.

The results are shown in Table 4. It is important to note that when there is no
conflicting information—as is the case for the GEO-REL-SparQ datasets obtained
from GEO, SparQ will always correctly identify points that satisfy all the relations,
as it relies on a correct procedure of generating a quantitative solution (valuation)
from a qualitative configuration, so this result is nothing new. However, when there
is conflicting information—as is the case for the WIKI-REL datasets, it will fail com-
pletely. Both Kim and Belouaer methods have relatively poor performance, with only
about 45% and 16% of the relations being able to be correctly realized, respectively.
This demonstrates the superiority of the proposed approach on generating point sketch
maps for qualitative directional relations, especially when there is conflicting and noisy
information.

Regarding the runtimes, for Belouaer, it is about 600 seconds for each dataset;
for Kim and SparQ, it is around 1 second. For ours, it is about 5 seconds for 5 000
iterations.

5.5. Scalability

To see how the proposed approach scales, for different values of n (from 1 000 to 10 000
with a step size of 1 000), we randomly select n points from GEO, and for each of the
n points, we calculate the directional relations between a point and its k neighbours
(from 3 to 21 with a step size of 3) in the n points, using the cone-shaped model in
Section 3.1. The relations are then used as input of the proposed approach to generate
sketch maps with 5 000 iterations. The results are averaged over 3 runs for each n and
each k and are shown in Figure 12.

It can be seen that the proposed approach, which has a runtime complexity approx-
imately in O(n2), can scale to thousands of places and relations. For the case with
10 000 places and up to 21 relations for each place, the average time used to generate
sketch maps with 5 000 iterations is 509 seconds. Also, the number of neighbours seems
to have no significant effect on the runtime. A possible reason could be that the cal-
culation of gradient dominates the runtime, for which different numbers of neighbours
have a similar cost.

5.6. Effect of Incorrect Relations

To further demonstrate that the proposed approach can deal with a large proportion of
incorrect/inconsistent relations, we randomly changed a certain proportion of relations
to be corresponding opposite relations (e.g., N is changed to S when selected) and also
to be relations with an error distance of 1 or 2 (e.g., N is changed to one of Ne,Nw,E,W)
for the eight datasets of GEO-REL and WIKI-REL. The ratio of opposite or wrong
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Figure 12. The runtime changes of the proposed approach for different number of places and neighbours.

relations varies from 0.1 to 0.9 with a step size of 0.1. The ACC metric values are
averaged over 5 repeated constructions of sketch maps, comparing against the original
relations. The results are shown in Figure 13.

(a) (b)

Figure 13. The change of ACC values as the ratios of opposite relations and wrong relations (error distance

= 1 or 2) increase.

Generally, the proposed approach can still maintain a relatively high accuracy (>
0.6) when the ratio of opposite relations is smaller than or equal to 0.2. When the
ratio is below 0.6, the number of unsatisfied relations is larger than the number of
the provided incorrect relations. This might be because that the presence of incorrect
relations can make it harder to find points that satisfy other correct relations. For
wrong relations with an error distance of 1 or 2 in Fig. 13, we can see that the proposed
approach can maintain a higher accuracy than in the case of opposite relations, and
can achieve a 0.4 accuracy rate even with 90% of wrong relations. This demonstrates
the robustness and error correction capability of the proposed approach.
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Table 5. Comparison of metrics when generating sketch maps without and with qualitative proximity infor-

mation for GEO-REL datasets.
Without Proximity GEO-REL-1 GEO-REL-2 GEO-REL-3 GEO-REL-4

#Correct/#Incorrect 646/7 644/7 550/8 574/19
Total Error Distance 7 7 8 19

ACC (%) 98.93 98.92 98.57 96.80

With Proximity GEO-REL-1 GEO-REL-2 GEO-REL-3 GEO-REL-4
#Correct/#Incorrect 650/3 649/2 554/4 589/4
Total Error Distance 3 2 4 4

ACC (%) 99.54 99.69 99.28 99.33

5.7. Handling Proximity Information

The proposed model takes neighbour information into account when formulating the
loss function (Equation 6), by setting the similarity value of Wij to 1 if two places
are neighbours and to 0 otherwise. Qualitative proximity information can also be
considered by varying the value of Wij to reflect degrees of proximity.

In particular, to demonstrate how the proposed model can handle proximity infor-
mation, we first categorize distances between points in the GEO-REL datasets, by
using a threshold r, which is the average of the mean distances between 3-nearest
neighbours of each point, i.e., r = 1

n

∑n
i=1(

∑
j∈N3(i) dij)/3. Points of distance less than

or equal to r are considered as being close, points of distance between r and 2r are
considered as being in the middle, and points of distance larger than 2r are considered
as being far. For points with different qualitative proximity relations, we set differ-
ent Wij values to prioritize the optimization of closer points, i.e., Wij = 1 for close,
Wij = 0.5 for middle, Wij = 0.25 for far.

Table 5 compares the results obtained without and with qualitative proximity in-
formation. It can be seen that by considering qualitative proximity information in the
model, more directional relations are satisfied, which means that proximity informa-
tion can guide the model to find points that better align with the directional relations.
This might be because the qualitative directional relations are not precise with respect
to angles, and proximity information can help to correct the realized angles.

However, we find that the current model has difficulty in maintaining relative dis-
tance orders, e.g., two places that are considered close might have generated points
whose distance value is not ranked in the first 1/3 of all distance values. In fact,
about 2/3 of the distance values are ranked wrong in the generated point sketch map
when considering qualitative proximity information, which is not better than the point
sketch map that considers neighbouring points with the same global Wij .

We also tried to add a distance loss in the form of a mean square loss of distance:∑n
i=1

∑iki

j=i1
(‖pi−pj‖−dij)2. Still, neither the distance values nor the relative distance

relations can be satisfactorily maintained in the results. This might be because the
model has difficulty in properly balancing between the distance/neighbour loss and
the directional relation loss.

In summary, we only considered a very primitive strategy to characterize proxim-
ity information in the current model. There are still open and challenging problems,
including how to better convert qualitative proximity information into quantitative
ones, and how to balance between directional and proximity information.
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Table 6. Comparison of metrics when generating sketch maps using either selected single relations or original

multiple relations for WIKI-REL datasets.

Single Relation WIKI-REL-1 WIKI-REL-2 WIKI-REL-3 WIKI-REL-4
#Correct/#Incorrect 556/97 564/87 489/69 507/86
Total Error Distance 99 87 69 87

ACC (%) 85.15 86.64 87.63 85.50

Multiple Relations WIKI-REL-1 WIKI-REL-2 WIKI-REL-3 WIKI-REL-4
#Correct/#Incorrect 511/142 533/118 471/87 487/106
Total Error Distance 146 118 87 107

ACC (%) 78.25 81.87 84.41 82.12

5.8. Generalizing to Multi-Relations

As mentioned in Section 5.1, a pair of places might have multiple directional relations,
whereas we only kept the relation that is conceptually closest to the calculated rela-
tion in GEO-REL in the previous experiments. In fact, the proposed model can be
adapted to handle multiple relations between a pair of places. One approach is to take
a (possibly weighted) average of the relational losses of these relations for a given pair,

i.e., −
∑n

i=1

∑
j∈N+(i)(

1
|R|

∑
r∈R

pj−pi
‖pj−pi‖ ·

−−→
dRji

‖
−−→
dRji
‖
), where R = {r1, . . . , rm} is a set of

multiple relations between places i and j. This loss can balance the effect of different
relations and guide the model to find points that have a relation for the corresponding
pair of places that is conceptually closest to the multiple relations, that is, a consensus
of multiple relations.

The results are shown in Table 6. Note that in the table the relations of the generated
sketch maps in the case of multiple relations are compared against the selected single
relations in the previous WIKI-REL datasets. It can be seen that the performance
of the proposed model is still promising, although there is a decrease in performance
when multiple relations are considered.

6. Conclusion and Future Work

In daily life, user descriptions of locations are often qualitative rather than quanti-
tative, e.g., “the archaeological museum is to the north of the old town”. However,
although qualitative descriptions conform to human cognition, they are not intuitive
enough compared to visualized maps. In order to convert qualitative information into a
sketch map, traditional methods often design complex formulas based on some expert
knowledge for such conversion, which have difficulties in handling qualitative spatial
relations for a large number of entities and lack tolerance for inaccurate spatial re-
lations. In this article, we propose an end-to-end approach that models the sketch
map generation of qualitative directional relations into an optimization problem. This
approach introduces the Laplacian reconstruction loss to characterize neighbourhood
information, and incorporates a novel loss of qualitative directional relations to capture
qualitative directional information. Gradient descent is exploited to iteratively reduce
the value of the proposed loss function and thus obtain an approximate solution to the
optimization problem. The proposed approach combines qualitative directional rela-
tions with machine learning techniques, and provides a new solution for quantification
and visualization of qualitative relations. Extensive experiments conducted on various
datasets, including automatically generated, user-annotated, noisy, and information-
missing, verify the effectiveness of the proposed approach.
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Implications. The proposed approach and the problem of converting qualitative spa-
tial relations to numerical data have several important implications for geographical
information science, qualitative spatial reasoning, and other relevant fields.

Firstly, by quantifying the large amount of qualitative spatial relations existing in
various sources like social media and blogs, the proposed approach can enrich the
knowledge base of GISs, and consequently help to better integrate qualitative infor-
mation with current GISs that are mainly based on numerical data and methods. The
obtained numerical representations can also be readily utilized by well-established
analysis tools in GISs, and inspire new techniques from other fields to process quali-
tative information. For example, one can perform topological data analysis (Corcoran
and Jones 2023) on the point sketch maps obtained with the proposed approach, pro-
viding a way to analysing qualitative relations and revealing patterns of geographical
data in the view of topology. With geometrical representations instead of symbolic
qualitative relations, it also becomes more convenient and powerful to calculate sim-
ilarities between geographical places, as one can use various measurements based on
numerical values. This can in turn enhance the matching of geographical entities for
which originally only qualitative information was available.

Secondly, compared to pure qualitative relations, geometrical representations can
help people to better understand and register geographical information, due to its
intuitiveness. This can also improve the accessibility of geographical data and the
experience of human-computer interaction in GISs. For example, there are plenty of
qualitative descriptions of spatial relations among events and places, and by generating
numerical representations of events and places, GISs can easily integrate historical
information with current data, such as when visualizing historical scenes on top of
modern maps. Users of location-based services, such as travellers who would like to
record and share the routes and points of interest (POIs) during their travel, even when
they do not have professional geographical backgrounds, can conveniently generate
routes and POIs, by using the qualitative relations they recorded casually.

Thirdly, for qualitative spatial reasoning, quantifying qualitative relations offers the
possibility of performing reasoning with numerical methods. For example, the provided
qualitative relations between geographical entities are usually contradictory, e.g., due
to the oversimplified interpretation of geometries of these entities. Deriving a plausible
solution for these contradictory relations such that the maximum number of relations
are satisfied is known as the MAX-QCN problem (Condotta et al. 2016). The proposed
approach that generates points satisfying most of the relations can be considered as
an efficient approximate solution or heuristic to this NP-hard MAX-QCN problem.

Lastly, the idea of the proposed approach can also help geographical education,
by simplifying and visualizing the complex spatial information into intuitive maps.
Besides, it is useful for other fields like the design of scenes in computer games, where
designers can just specify the qualitative relations between objects in the scene and
a draft can be generated automatically. For the generation of pictures or videos from
texts that is popular due to the emergence of Large Language Models (LLMs), it can
serve as a referee that can guide LLMs to understand the rules behind qualitative
relations, such that the generated pictures or video are not against the fact.

Limitations and Future Work. Besides the aforementioned important implications
and potential applications, the current approach still has several limitations that can
also be topics of future work, as discussed in what follows.

Using points to approximate the places is inherently rough. As has been noted in
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the literature, e.g., (Peuquet and Ci-Xiang 1987), the shape, size, and even cultural
and historical knowledge of places can affect the understanding of directional relations,
and the relations between centroids might not align with this understanding. Still, the
approach presented here introduces a promising way to quantitatively utilize qualita-
tive spatial relations with machine learning and to visualize them in an end-to-end
manner.

It is definitely interesting to investigate how other more complex geometries and
other types of information can be used to generate more comprehensive sketch maps
similarly. When more complex geometries, like rectangles and polygons, and other
types of qualitative information, like relative directions, topological relations, hierar-
chy of objects, and proximity, are considered, devising a proper model to deal with
complex geometries and incorporate different types of qualitative information is an
open and challenging topic. For example, in this article, we consider places with direc-
tional relations among them as neighbours, while in practice places that are far away
might also be involved in directional relations, e.g., landmarks in a city might have
relations with places all over the city; though, we think that such relations would be
comparatively less frequent (e.g., one would position the Eiffel tower with reference to
the heart of Paris, rather than a suburb or a town in the south of France). This would
result in perturbations in the generated sketch map. Although the constraint of direc-
tional relations could reduce the perturbations, it is interesting to see if one can detect
and correct such inconsistency of neighbouring information to make the sketch map
more concise. Obtaining directional relations from less structured sources (like social
media posts, blogs, and books) with techniques including natural language processing
and large language models is also important and challenging. Sometimes, crucial in-
formation, such as the directions of references for relative directions, is not explicitly
available. Being able to derive such information by combining different sources is cru-
cial for real-world applications. For example, to infer the directions of references, one
can combine sensor data from mobile phones or photos at the same time of the gener-
ation of the descriptions, and/or make use of qualitative spatial reasoning techniques.

Although the current approach can scale to thousands of places and relations, it
still can be improved to meet the needs of the era of big data. An emerging topic
in Artificial Intelligence research is to combine symbolic reasoning with quantitative
computation, and this can also help the current approach scale better. Specifically,
the current approach did not consider the logical implications of the relations, which
can actually guide the generation of points. For example, some relations might be
redundant in the sense that satisfying some other relations can ensure this relation to
be satisfied, and thus such relations can be removed to improve efficiency, cf. (Peng
et al. 2023). Reasoning can also help to give better initial positions of points, which
may help the optimization process to finish in far fewer iterations.
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