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Abstract—Representing belief information is a fundamental
problem in the field of belief revision. The AGM framework
uses a deductively closed set of formulas, known as a theory, to
represent the belief information of an agent, because the belief
information of a rational agent should satisfy properties similar
to a theory. However, in the iterated revision setting, the DP
framework uses conditional beliefs like (ϕ | ψ) to represent
such information, which is not natural, as conditional beliefs
are not formulas and logical connections between them cannot
be characterized clearly. In this paper, we propose a novel logic
system for representing belief information under iterated revision
as a theory in this logic system, which is more natural than the
approach of the DP framework. We also prove the soundness and
completeness of the logic system, such that it is readily usable for
performing iterated revision. Finally, we showed that this logic
system is powerful enough to represent general epistemic state
as a theory, which is more general than the representation of the
DP framework.

Index Terms—belief revision, AGM framework, epistemic state,
belief algebra

I. INTRODUCTION

Knowledge representation and reasoning is a core part of
artificial intelligence research, and belief revision [1] is an
important branch of knowledge representation and reasoning.
It mainly concerns how an agent changes her belief when
she gets new evidence (i.e. new belief information). The
core issues in this field involve the representation of belief
information and the formulation of belief revision rules. Logic
based belief revision has been studied in the past three decades
[2]–[10]. The best-known approach in this field is the AGM
framework by Alchourron, Gärdenfors, and Makinson [2],
proposing solutions to both of the core issues of belief revision.

The AGM framework characterizes belief revision under
some background logic that includes classical propositional
logic, and represents an agent’s current belief K (called a
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belief set) as a set of formulas that is deductively closed,
and represents the new evidence by a single formula ϕ. The
revision result is also represented as a belief set K◦ϕ, where ◦
(called revision operator) is a map from belief set and formula
to belief set. The AGM framework identified eight postulates
as the basic rules of believe revision operator. To semantically
characterise AGM operators, researchers introduced several
different models such as system of spheres [11], epistemic
entrenchment [12], and total preorders on worlds [3]. In [3],
Katsuno and Mendelzon considered the situation when the
background language is a finite propositional logic language.
They showed an important representation theorem that for
each belief set K and an AGM revision operator, there is a
total preorder � on worlds such that for any formula ϕ, the
revision result K◦ϕ is totally decided by the minimal ϕ worlds
w.r.t. �. This representation theorem means that an AGM
revision operator can be completely characterized by a total
preorder on worlds, which represents the agent’s “preference”
on worlds. To syntactically characterize the preference of
the agent, Darwiche and Pear (DP for short) introduced the
concept of conditional belief [4]. A conditional belief has
the form (ϕ | ψ), which means when the agent believes ψ
she will also believes ϕ. The DP framework uses epistemic
state instead of belief set to characterize the agent’s belief
information, where an epistemic state consists of a belief set
and some conditional beliefs. The belief revision framework
based on epistemic states can better model the iterated belief
revision process by maintaining the preference of the agent
in subsequent revisions [4], [13], while the traditional AGM
paradigm discards such information. Based on the DP frame-
work, iterated belief revision has been extensively studied in
the past two decades [5], [8], [9], [14], [15].

However, there are still some fundamental issues that remain
unresolved in iterated belief revision, one of which lies in the
DP framework. The DP framework uses conditional beliefs
like (ϕ | ψ) to represent the preference of agent, but (ϕ | ψ)
is not a “formula” in the underlying logic. This means things
like “¬(ϕ | ψ)”, “(ϕ1 | ψ1) ∧ (ϕ2 | ψ2)” are not defined,



which is not natural. Moreover, the relation between (ϕ | ψ)
and (¬ϕ | ψ) is also not characterized clearly in a syntactic
way. In fact, note that in the AGM framework, a rational belief
set is equivalent to a deductively closed set of formulas (i.e.
a theory) under the background logic. It is actually natural
to characterize belief information with a theory, because
belief information should have the following common-sense
properties: if the agent believes ϕ then she should not believe
¬ϕ; if the agent believes ϕ and ψ then she should also believe
ϕ∧ϕ; if the agent believes ϕ and ϕ implies ψ then she should
believe ψ. In other words, given a belief set K, for any formula
ϕ, exactly one of the following cases will happen: (1) ϕ ∈ K;
(2) ¬ϕ ∈ K; (3) both ϕ,¬ϕ 6∈ K, where the agent have no
preference on ϕ and ¬ϕ, and the agent believes neither ϕ nor
¬ϕ. These are exactly properties of a theory. To resolve the
problem of the unnatural representation of belief information
in iterated belief revision, we propose a novel logic system
to bring belief sets and conditional beliefs together into a
unified framework. We will discuss both syntax and semantics
to characterize the belief information of an agent. The main
contributions of this paper are:
• We proposed a novel logic system for modelling belief

information, which is more intuitive in the sense that it
is in a similar form as the well-known AGM paradigm;

• We proved the soundness and completeness of the logic
system, which means it is readily applicable to perform-
ing iterated belief revision based on this logic system;

• We showed the representation power of this logic system,
by proving that a general epistemic state, which is more
general than epistemic state or belief set, can be repre-
sented as a deductively closed set of formulas (a theory)
in this system.

The remainder of this paper is structured as follows: Sec-
tion II introduces basic notions of belief revision, epistemic
states, and general epistemic states. Section III proposes
and analyses the new logic system for representing belief
information. Section IV discusses related work and Section
V concludes the paper.

II. BACKGROUND

A. Notions
In this paper, we restrict our discussion to belief revision

in a finite propositional language L, which is built up from a
finite set of propositional variables P and logical connectives
such as ¬,∧,∨,→,↔. We usually use ϕ,ψ, . . . to represent
the formula of propositional logic. A (possible) world (or
interpretation) is a mapping from P to {true, false}, which
determines the truth value of propositional variables. Given a
world ω and a formula µ in L, we use ω |= µ to denote the
truth value of µ is true under ω. A tautology in L is a formula
that is true under any world of L. We denote by T = p ∨ ¬p
a fixed tautology in L and F is an abbreviation for ¬T. We
write W for the set of all worlds (interpretations), and denote
by Taut(L) the set of all the tautologies of L. A theory K
of L is a set of formulas which is deductively closed. More
details about propositional logic can be found in [16].

For each formula ψ in L, we denote by [ψ] the set of all
worlds of ψ, i.e. [ψ] = {ω ∈ W | ω |= ψ}. For a subset
U ⊆ W , FORM(U) represents a formula whose worlds are
exactly those in U . Clearly, we have FORM([ψ]) ≡ ψ and
[FORM(U)] = U .

A (partial) preorder � on S is a binary relation on S which
is reflexive and transitive. A preorder � is called total if any
two elements in S are comparable under �. We write x ∼ y
if x � y and y � x, and x ≺ y if x � y but y 6� x.

B. Representation in the AGM Framework

In the AGM framework, an agent’s belief information is
represented as a theory K which is called belief set. If the
agent is rational, then K is assumed to be consistent. This
means that belief information should satisfy the following
properties:

(T1) If ϕ ∈ K then ¬ϕ is not in K.
(T2) If ϕ1 ∈ K, ϕ2 ∈ K, then ϕ1 ∧ ϕ2 ∈ K.
(T3) If ϕ1 ∈ K and ϕ1 → ϕ2 then ϕ2 ∈ K.

These properties are actually natural for rational human beings.
(T1) says an agent should not believe contradictory things;
(T2) and (T3) mean that an agent should believe things that
can be inferred from known ones. Researchers noted that the
representation of belief information in the AGM work has
some problems. In fact, there is certain implicit information
that was used in the revision but is not maintained in the
revision result. This problem makes the AGM framework
inappropriate for iterated belief revision (a revision process
that may contain a sequence of revisions; see [4]), because in
the next round of revision the implicit information was lost.

C. Representation in the DP Framework

After observing that belief set alone is not sufficient to
characterize the information needed for iterated belief revision,
researchers proposed extra-logical factors such as conditional
belief [4], [17], [18] and epistemic entrenchment [12] to
overcome this shortcoming.

A conditional belief has the form (ϕ | ψ), where ϕ and ψ
are formulas in L. An agent has a conditional belief (ϕ | ψ)
if she will believe ϕ whenever she believes ψ. Darwiche and
Pearl [4] use epistemic states to model an agent’s belief states,
and propose a framework of iterated belief revision based on
epistemic states.

Definition 1. Suppose Ψ consists of a belief set Bel(Ψ) and
a set of conditional beliefs. We say Ψ is an epistemic state
if the operator ◦ defined by Ψ via (EP) satisfies (R∗1)-(R∗6)
below.

(EP) ϕ ∈ Ψ ◦ ψ iff (ϕ | ψ) ∈ Ψ.
(R∗1) Ψ ◦ µ implies µ.
(R∗2) If Ψ ∧ µ is satisfiable, then Ψ ◦ µ ≡ Ψ ∧ µ.
(R∗3) If µ is satisfiable, then Ψ ◦ µ is satisfiable.
(R∗4) If Ψ1 = Ψ2 and µ1 ≡ µ2, then Ψ1 ◦ µ1 ≡
Ψ2 ◦ µ2.
(R∗5) (Ψ ◦ µ) ∧ ϕ implies Ψ ◦ (µ ∧ ϕ).



(R∗6) If (Ψ ◦ µ) ∧ ϕ is satisfiable, then Ψ ◦ (µ ∧ ϕ)
implies (Ψ ◦ µ) ∧ ϕ.

It was shown in [4] that each epistemic state is equivalent
to a total preorder on W , and in this sense, an epistemic state
actually depicts the preference (on worlds) of an agent. In fact,
if Ψ consists of a belief set Bel(Ψ) and a set of conditional
beliefs, then Ψ is an epistemic state iff there is a total preorder
� on worlds such that:

(ES1) ϕ ∈ Bel(Ψ) iff there is a world ω in [ϕ] such that
ω ≺ ω′ for all ω′ ∈ [¬ϕ].
(ES2) (β | α) ∈ Ψ iff there is a world ω in [α∧β] such
that ω ≺ ω′ for all ω′ ∈ [α ∧ ¬β].

In the DP framework, iterated belief revision process is
equivalent to revising a total preorder �Ψ by a formula µ,
and the revision result is also a total preorder �Ψ◦µ. This is
an extension of the AGM framework, where the revision result
of the AGM framework is just a belief set but not an epistemic
state (i.e., total preorder). However, the representation of belief
information in the DP framework also has some problem, as
identified in [19]: it might be too strong for representing belief
information in some cases.

D. Representation of belief information by GEP

In the DP framework, conditional beliefs are as important
as belief sets, and belief information consists of both a belief
set and conditional beliefs. Kern-Isberner [18] noticed that a
formula ϕ can also be seen as a special conditional belief
(ϕ | T). With this observation, an epistemic state can be seen
as a set consisting only of conditional beliefs. Meng et al. [19]
proposed to use general epistemic state (GEP) to represent
belief information to overcome the problem of epistemic state.
A GEP is defined as follows.

Definition 2. Suppose Ψ consists of a belief set Bel(Ψ) and a
set of conditional beliefs. We call Ψ a general epistemic state
(GEP) if it satisfies (E1)-(E7).

(E1) ϕ ∈ Bel(Ψ) iff (ϕ | T ) ∈ Ψ.
(E2) If (β | α) ∈ Ψ, then (¬β | α) /∈ Ψ.
(E3) If (β | α∨β) ∈ Ψ and β |= γ, then (γ | α∨γ) ∈
Ψ.
(E4) If (β | α∨β) ∈ Ψ and γ |= α, then (β | γ∨β) ∈
Ψ.
(E5) (β | α) ∈ Ψ and (γ | α) ∈ Ψ iff (β ∧γ | α) ∈ Ψ.
(E6) If α1 ≡ α2 and β1 ≡ β2, then (β1 | α1) ∈ Ψ iff
(β2 | α2) ∈ Ψ.
(E7) If ϕ is consistent, then (ϕ | ϕ) ∈ Ψ.

Note that each epistemic state is a GEP, but the opposite
is not always true [19]. This representation can characterize
more general belief information than the AGM representation
as a theory or the DP representation as an epistemic state.
Nevertheless, the representation contains conditional beliefs
which are not logical formulas, and this makes it hard to
characterize the logical relations between conditional beliefs.
For instance, (ϕ | ψ) and (¬ϕ | ψ) should not be put together
into the belief information for a rational agent, and it is natural

to have a rule that if the agent holds (ϕ1 | ψ) and ϕ1 → ϕ2,
then the agent believes (ϕ2 | ψ). In this paper, we try to build a
novel logic system to characterize conditional beliefs directly
as formulas, and we expect that it has enough representation
power so that both GEP and epistemic state correspond to
theories in this logic, while possessing natural properties like
the ones in (T1)-(T3).

III. A NEW LOGIC FOR ITERATED BELIEF REVISION

In this section, we introduce a novel logic to characterize
iterated belief revision, which is based on a finite propositional
logic L with propositional variables P .

Recall that if an agent has a conditional belief (ϕ | ψ) then
she will believe ϕ whenever she believes ψ. This means that if
the agent believes ψ then she believes ϕ∧ψ, and a conditional
belief (ϕ | ψ), in some sense, is the same thing as ϕ ∧ ψ is
more believable than ¬ϕ ∧ ψ. To characterize this kind of
preferences, and thus to characterize general epistemic state,
we will generalize the concept of formulas by introducing a
binary relation on propositional formulas.

Definition 3. Suppose R is a binary relation on L, i.e. R ⊆
L× L, the relation language LR on L is inductively defined
as follows:
• If 〈ϕ,ψ〉 ∈ R, then PR(ϕ,ψ) is a formula in LR, and we

call the formula with the form PR(ϕ,ψ) an R-formula.
• If α, β ∈ LR, then ¬α, (α ∧ β) are formulas in LR.
• Any formula that is the result of finite applications of the

above two rules is a formula in LR.

Of course, the other standard connectives and constants of
LR like ∨,→,↔,T,F can be easily defined in terms of ∧
and ¬ as in propositional logic. It is then easy to see that
PR(ϕ,ψ),¬PR(ϕ1,¬ψ1 ∧ ψ2) → ¬PR(ϕ2, ψ3) are formu-
las in LR, however, ϕ ∧ PR(R(ϕ1, ψ1), PR(R(ϕ1, ψ1), ψ2),
PR(R(ϕ1, ψ1), ϕ2) are not in LR.

Intuitively, the relation R determines which formulas can
be compared, and PR(ϕ,ψ) represents the statement that ϕ is
preferred over ψ.

Specifically, we can define a relation on L that only consider
pairwise inconsistent formulas. Suppose ϕ1, ϕ2, · · · , ϕn is a
set of formulas in L. Then we say ϕ1, ϕ2, · · · , ϕn are pairwise
inconsistent if for all i 6= j we have ϕi → ¬ϕj ∈ Taut(L)
(i.e. [ϕi] ∩ [ϕj ] = ∅).

Definition 4. Let B be the binary relation on L s.t. 〈ϕ,ψ〉 ∈ B
iff ϕ→ ¬ψ ∈ Taut(L). We call LB the B-logic language.

In this case, only the formulas ϕ and ψ that are inconsistent
can be compared, and only then PB(ϕ,ψ) is a formula in LB ,
representing ϕ is preferred over ψ.

Recall that belief information can be represented by using
conditional beliefs in the form of (ϕ | ψ), which means ϕ∧ψ is
more believable than ¬ϕ∧ψ. Note that ¬((ϕ∧ψ)∧(¬ϕ∧ψ)) ≡
T, then ϕ ∧ ψ and ¬ϕ ∧ ψ is comparable w.r.t. B and the
information (ϕ | ψ) can be represented as PB(ϕ∧ψ,¬ϕ∧ψ)
in the new language LB .



In addition to the language itself, the ability to perform
inference or reasoning with this language is also critical for
it to be used for belief revision. We would inspect the syntax
and semantics of B-logic language in the following, in terms
of an axiom system. The axiom system B over LB contains
the following axioms and inference rules:

(PR) All substitution instances of tautologies of propo-
sitional logic.
(MP) From α and α→ β infer β.
(BP) From PB(ϕ,ψ) infer ϕ→ ¬ψ ∈ Taut(L).
(BR1) PB(ϕ,ψ)→ ¬PB(ψ,ϕ).
(BR2) From ¬ϕ /∈ Taut(L) infer PB(ϕ,F).
(BR3) From ϕ1 → ϕ2 ∈ Taut(L) and ϕ2 → ¬ψ1 ∈
Taut(L) infer PB(ϕ1, ψ1)→ PB(ϕ2, ψ1).
(BR4) From ψ2 → ψ1 ∈ Taut(L) infer PB(ϕ1, ψ1)→
PB(ϕ1, ψ2).
(BR5) From ϕ ∨ ψ ≡ ϕ′ ∨ ψ′ infer PB(ϕ,ψ) ∧
PB(ϕ′, ψ′)→ PB(ϕ ∧ ϕ′, ψ ∨ ψ′).

All of the above correspond to natural assumptions in be-
lief revision. (PR) means that if ϕ ∨ ¬ϕ is a tautology of
propositional logic, then α ∨ ¬α is a axiom in B, where
α ∈ LB . Recall that PB(ϕ,ψ) means the agent thinks that
ϕ is more believable than ψ. In this situation, (BR1) means
that if ϕ is more believable than ψ, then it is natural that ψ
should not be more believable than ϕ. (BR1) discusses the
consistency of belief information like (T1). (BR2) shows if
ϕ is consistent then ϕ is always more believable than F. For
(BR3), if ϕ1 implies ϕ2 and the agent believes ϕ1 is more
believable than ψ1 then she also thinks ϕ2 is more believable
than ψ1. Similarly, if ϕ1 is more believable than ψ1 and ψ2

implies ψ1, then ϕ1 is also more believable than ψ2 and this
is exactly (BR4). (BR3), (BR4) are inspired by (T3). (BR5)
is a generalization of the following (BR5∗), which is inspired
by (T2).

(BR5∗) PB(ϕ,¬ϕ)∧PB(ψ,¬ψ)→ PB(ϕ∧ψ,¬(ϕ∧
ψ)).

(BR5∗) means that if the agent believes ϕ and ψ then she
will believe ϕ ∧ ψ, i.e., belief information should be closed
under conjunction. (BR5) will degenerate to (BR5∗) in the
case when ϕ1 ∨ ψ1 ≡ ϕ2 ∨ ψ2 ≡ T. The reason we want to
generalize (BR5∗) to (BR5) is that, in GEP we are not only
comparing complementary statements like ϕ and ¬ϕ, but also
pairs like 〈ϕ,ψ〉 ∈ B. The next proposition shows that (BR5)
is significant in characterizing the reasoning power of belief
information, as it can generate natural and necessary inference
rules.

Proposition 1. With the axiom system B, we have the follow-
ing results:

(BR6) (PB(ϕ1 ∨ ϕ2, ϕ3) ∧ PB(ϕ1 ∨ ϕ3, ϕ2)) →
PB(ϕ1, ϕ2 ∨ ϕ3).
(BR7) (PB(ϕ1, ψ1) ∧ PB(ϕ1, ψ2)) → PB(ϕ1, ψ1 ∨
ψ2).

Proof. (1) Take ϕ = (ϕ1 ∨ ϕ2), ψ = ϕ3 and ϕ′ =
ϕ1, ψ

′ = (ϕ2 ∨ ϕ3) then we get (BR6) via (BR5). (2) From

PB(ϕ1, ψ1) ∧ PB(ϕ1, ψ2) we know ϕ1 → ¬ψ1 ∈ Taut(L),
ϕ1 → ¬ψ2 ∈ Taut(L) by (BP). Since ϕ1 → (ϕ1 ∨ (ψ2 ∧
¬ψ1)) ∈ Taut(L) and (ϕ1 ∨ (ψ2 ∧¬ψ1))→ ¬ψ1 ∈ Taut(L),
we have PB(ϕ1, ψ1)→ PB(ϕ1 ∨ (ψ2 ∧ ¬ψ1), ψ1) by (BR3).
In the same way, we have PB(ϕ1∨(ψ1∧¬ψ2), ψ2). Take ϕ =
ϕ1∨ (ψ2∧¬ψ1), ψ = ψ1 and ϕ′ = ϕ1∨ (ψ1∧¬ψ2), ψ′ = ψ2,
then we have PB(ϕ1, ψ1 ∨ ψ2) by (BR5).

(BR6) reveals that if the agent thinks the disjunction of
ϕ1 and ϕ2 is more believable than ϕ3, and the disjunction
of ϕ1 and ϕ3 is more believable than ϕ2, then the strongest
preference of the agent among ϕ1, ϕ2, ϕ3 is ϕ1. (BR7) shows
that if ϕ1 is more believable than ψ1, and ϕ1 is more believable
than ψ2, then ϕ1 is more believable than the disjunction of ψ1

and ψ2. On the basis of (BR6) and (BR7), further propositions
on inference rules are drawn as follows.

Proposition 2. With the axiom system B, we have:
(BR8) If ϕ1 → ¬ψ2 ∈ Taut(L) then (PB(ϕ1, ψ1) ∧
PB(ψ1, ψ2))→ PB(ϕ1, ψ2).
(BR9) (PB(ϕ1 ∨ ϕ2, ψ1) ∧ PB(ϕ1, ϕ2)) →
PB(ϕ1, ψ1 ∨ ϕ2).

Proof. (1) From ϕ1 → ¬ψ2 ∈ Taut(L) and (PB(ϕ,ψ1) ∧
PB(ψ1, ψ2), we know ϕ1, ψ1, ψ2 are pairwise inconsistent
formulas. From PB(ϕ1, ψ1) we have PB(ϕ1 ∨ ψ2, ψ1) by
(BR3). Similarly, we have PB(ψ1, ψ2) → PB(ϕ1 ∨ ψ1, ψ2).
Then by (BR7) we have PB(ϕ1, ψ1 ∨ ψ2). Further more we
have PB(ϕ1, ψ2) by (BR3) and ψ2 → ψ1 ∨ ψ2. (2) From
PB(ϕ1 ∨ ϕ2, ψ1), we have ϕ1 ∨ ϕ2 → ¬ψ1 ∈ Taut(L).
Then we have PB(ϕ1, ϕ2)) → PB(ϕ1 ∨ ψ1, ϕ2) by (BR3).
Following (BR6), we have PB(ϕ1, ϕ2 ∨ ψ1).

(BR8) shows the preference among formulas has transitivity
and (BR9) shows the preference of ϕ ∨ ψ is determined by
the higher preference portion of them.

Proposition 3. With the axiom system B, we have the follow-
ing properties.
(1) PB(ϕ,ψ)→ PB(¬ψ,ψ).
(2) PB(ϕ,ψ1 ∨ ψ2)↔ PB(ϕ,ψ1) ∧ PB(ϕ,ψ2).

Proof. (1) From PB(ϕ,ψ) we have ϕ → ¬ψ by (BP). Then
we have PB(¬ψ,ψ) by (BR3). (2) From PB(ϕ,ψ1 ∨ψ2), we
have ϕ → ¬(ψ1 ∨ ψ2) ∈ Taut(L). This means ϕ → ¬ψ1 ∈
Taut(L). Then we have PB(ϕ,¬ψ1) by (BR3). Similarly,
we have PB(ϕ,¬ψ1), and we have PB(ϕ,ψ1 ∨ ψ2) →
PB(ϕ,ψ1) ∧ PB(ϕ,ψ2). Hence, PB(ϕ,ψ1) ∧ PB(ϕ,ψ2) ↔
PB(ϕ,ψ1 ∨ ψ2) is straightforward by (BR7).

Remark 1. The above proposition shows that from PB(ϕ,ψ)
one can induce that the agent believes ¬ψ (or equivalently,
PB(ψ,¬ψ)), and the equivalent characterization between
PB(ϕ,ψ1) ∧ PB(ϕ,ψ2) and PB(ϕ,ψ1 ∨ ψ2), which seems
like De Morgan law.

Recall that each conditional belief (ϕ | ψ) can be repre-
sented by a LB formula PB(ϕ∧ψ,¬ϕ∧ψ). Then each GEP
can also be characterized by a set of formulas in LB , as each
GEP consists of conditional beliefs.



Definition 5. Suppose Ψ is a GEP. Then the set of LB-
formulas of Ψ, denoted by Γ(Ψ), is the set {PB(ϕ∧ψ,¬ϕ∧
ψ) | (ϕ | ψ) ∈ Ψ}.

The above definition shows the method of translating a GEP
into a set of formulas of LB . In the next section, we will
discuss the semantics of LB and show the relation between a
GEP and a special kind set of formulas, i.e. a theory of LB .

Definition 6. Suppose Γ ⊆ LB . Then we call Γ is a theory
in LB iff Γ is deductively closed under B. A theory Γ is
called consistent iff F 6∈ Γ. The deductive closure of Γ in
LB , denoted by CnB(Γ), is the set of formulas in LB that
is provable by Γ under B, i.e., {α ∈ LB | Γ `B α}, where
Γ `B α if α is provable by Γ under B.

A. The semantics of LB

In propositional logic, a truth assignment (i.e., a possible
world) gives a truth value of a formula. In modal logic, a
modal operator is interpreted by Kripke structure, i.e. a binary
relation on W . Similarly, we use belief algebras, which was a
concept first introduced in [19], to give the semantics of LB .

Definition 7. Suppose X is a nonempty set. Then we call
(2X ,⊆,>,⊥,− ) ((2X ,⊆,− ) for short) a power-set lattice,
where ⊆ is the inclusion relationship between sets, U− is
the complement of U , and > = X and ⊥ = ∅ are the largest
element and the smallest element respectively.

It is clear that each power-set lattice is a boolean algebra
and we use a∩ b and a∪ b to denote the greatest lower bound
and the least upper bound of {a, b}, respectively.

Definition 8. We call (G,⊆,�,>,⊥,− ) a belief algebra if
it satisfies

(PL) (G,⊆,− ) is a power-set lattice.
(A0) � is a binary relation such that if a � b then

a ∩ b = ⊥.
(A1) If a ∈ G, then a� ⊥ iff a 6= ⊥.
(A2) If a� b, then b 6� a.
(A3) If a ⊆ a1, b1 ⊆ b, a1 ∩ b1 = ⊥, and a� b, then

a1 � b1.
(A4) If a = a1 ∪ b1 = a2 ∪ b2 and a1 � b1, a2 � b2,

then a1 ∩ a2 � b1 ∪ b2.

(A0) shows that we only need to compare disjoint subset of
W . (A1) shows that each nonempty set has a higher preference
level than the empty set. (A2) shows � is a strict order. (A3)
shows that� satisfies conditional transitivity. (A4) is inspired
by the case that if ϕ is more believable than ¬ϕ and ψ is more
believable than ¬ψ then ϕ∧ψ is more believable than ¬(ϕ∧ψ).

Definition 9. A B-model M is a tuple (G, π), where G is a
belief algebra and π is a interpretation function which maps
each formula in L to an element of G, such that:

• ϕ→ ψ ∈ Taut(L) iff π(ϕ) ⊆ π(ψ).
• π(T) = >, π(¬ϕ) = π(ϕ)−.
• If ϕ 6≡ ψ then π(ϕ) 6= π(ψ).

By translating formulas in L to elements in a belief algebra
G, the preference of the agent over formulas becomes the
ordering � on G. For instance, π(ϕ)� π(¬ϕ) means that ϕ
is more believable than ¬ϕ, and if π(ϕ) and π(ψ) can not be
compared with �, then the agent has has no idea on which
one is more believable.

Definition 10. Suppose G is a belief algebra on 2W and M =
(G, π) is a B-model. Then the semantics of LB can be defined
as follows:
• M |= PB(ϕ,ψ) iff π(ϕ)� π(ψ).
• M |= ¬PB(ϕ,ψ) iff M 6|= PB(ϕ,ψ).
• M |= PB(ϕ1, ψ1) ∧ PB(ϕ2, ψ2) iff M |= PB(ϕ,ψ) and
M |= PB(ϕ,ψ).

For a formula α in LB , if M |= α, then we say M satisfies
α, or equivalently, α is satisfied by M .

Suppose Γ is a subset of LB . Then we denote by M |= Γ
if ∀α ∈ Γ,M |= α for some B-model M , and we denote
by Γ |= β iff for any B-model M , if M |= Γ then we have
M |= β. The following theorem shows that any formula in
LB that is provable under B is satisfied by any B-model.

Theorem 1. The axiom system B is sound for LB with respect
to B-models.

Proof. For (BP), if M |= PB(ϕ,ψ) then π(ϕ) � π(ψ).
Hence, π(ϕ)∩π(ψ) = ⊥ by (A0), and we have π(ϕ) ⊆ π(¬ψ)
as π(¬ψ) = π(ψ)− is the greatest element of {a | a∩π(ψ) =
⊥} under ⊆. In other word, ϕ → ¬ψ ∈ Taut(L) by the
definition of a B-model. Then (BP) is sound. For (BR1),
if M |= PB(ϕ,ψ) then π(ϕ) � π(ψ). By (A2), we have
π(ψ) 6� π(ϕ). Then we have M |= ¬PB(ψ,ϕ) and (BR1)
is sound. For (BR2), if ¬ϕ 6∈ Taut(L) then π(ϕ) 6= ⊥,
and we have π(ϕ) � ∅ for any belief algebra G. Hence
we have M |= PB(ϕ,F) and (BR2) is sound. For (BR3), if
ϕ1 → ϕ2 and ϕ2 → ψ1 ∈ Taut(L) then π(ϕ1) ⊆ π(ϕ2) and
π(ϕ2)∩π(ψ1) = ∅. If M |= PB(ϕ1, ψ1) then π(ϕ1)� π(ψ1).
By (BR3), we have π(ϕ2) � π(ψ1). Then we can conclude
that M |= PB(ϕ2, ψ1) and (BR3) is sound. Similarly, (BR4)
is sound by (A3) and (BR5) is sound by (A4).

Next we show that the axiom system B is also complete,
that is, any formula that is satisfied by any B-model is also
provable under B.

Theorem 2. Suppose Γ is a theory in LB and α ∈ LB . Then,
from Γ |= α we have Γ `B α.

Proof. If Γ is inconsistent, then the result is trivial. Therefore
we suppose Γ is consistent. By the definition of LB , the whole
proof can be done recursively. We only need to verify the
following three cases: α = PB(ϕ,ψ), α = ¬PB(ϕ,ψ) and
α = PB(ϕ,ψ)∧PB(ϕ′, ψ′). To show Γ `B α, it is equivalent
to show α ∈ CnB(Γ) = Γ. We will construct a special B-
model M = (G, π) and show that M |= α is equivalent to
α ∈ Γ.

Note that (2W ,⊆,− ) is a power-set lattice, where W is the
set of all worlds of L. We define a binary relation� on 2W as



follows, U � V iff PB(FORM(U), FORM(V )) ∈ Γ. Next we
show (2W ,⊆,�,W, ∅,−) is a belief algebra. By axiom (BP)
we know that if U � V then U ∩ V = ∅. This means (A0)
is satisfied. If U 6= ∅ then we have PB(FORM(U),F) ∈ Γ
by (BR2). This means U � ∅ in G and (A1) is satisfied.
If U � V then ¬PB(FORM(V ), FORM(U)) ∈ Γ by (BR1).
Then PB(FORM(V ), FORM(U)) 6∈ Γ and V 6� U . This is
equivalent to say that (A2) is satisfied. If U ⊆ U1, V1 ⊆ V ,
then FORM(U) → FORM(U1) ∈ Taut(L) and FORM(V1) →
FORM(V ) ∈ Taut(L). If U1 ∩ V1 = ∅ then we have
PB(FORM(U), FORM(V ))→ PB(FORM(U1), FORM(V1)) by
(BR3) and (BR4). This means if U � V then we have
U1 � V1, and (A3) is satisfied. If U = U1 ∪ V1 = U2 ∪ V2

then FORM(U1) ∨ FORM(V1) ≡ FORM(U2) ∨ FORM(V2).
Moreover, if U1 � V1 and U2 � V2 then we have
PB(FORM(U1), FORM(V1)), PB(FORM(U1), FORM(V1)) ∈ Γ
by the definition of �. By (BR5), we have PB(FORM(U1 ∩
U2), FORM(V1 ∪ V2)) ∈ Γ. Thus we have U1 ∩U2 � V1 ∪ V2

and (A4) is satisfied. Hence (2W ,⊆,�,>,⊥,−) is a belief
algebra. Furthermore, by the definition of �, it is easy to
verify the following properties:
• PB(ϕ,ψ) ∈ Γ iff [ϕ]� [ψ].
• ¬PB(ϕ,ψ) ∈ Γ iff [ϕ] 6� [ψ].
• PB(ϕ,ψ)∧PB(ϕ′, ψ′) ∈ Γ iff [ϕ]� [ψ] and [ϕ′]� [ψ′].
We define π(ϕ) = [ϕ] then M = (G, π) is a B-model.

Moreover, we have M |= α iff α ∈ Γ. Notice that, α ∈ Γ is
equivalent to Γ `B α. Hence, we can conclude that if Γ |= α
then Γ `B α.

Combining theorems 3 and 4, we can conclude that the
axiom system B is sound and complete for LB in terms of
B-models. From the proof of Theorem 4 it is easy to get
the following theorem, which reveals the 1-1 correspondence
between a consistent theory in LB and a belief algebra on 2W .

Theorem 3. Suppose Γ is a set of formulas in LB . Then Γ
is a consistent theory in LB if and only if there is a belief
algebra G = (2W ,⊆,�,W, ∅,−), such that PB(ϕ,ψ) ∈ Γ
iff [ϕ]� [ψ].

Note that Meng et al [19] showed that there is also a 1-1
correspondence between GEPs and belief algebras on 2W via
the following lemma.

Lemma 1 ( [19]). Suppose Ψ is a GEP, and G = (2W ,⊆,�
,W, ∅,− ) is a belief algebra.
• Given Ψ, we define a binary relation�Ψ on 2W by [α∧
β] �Ψ [α ∧ ¬β] iff (β | α) ∈ Ψ. Then (2W ,⊆,�Ψ

,W, ∅,− ) is a belief algebra.
• Given G, we define Gep(G) a set of conditional beliefs

by (β | α) ∈ Gep(G) iff [α ∧ β] � [α ∧ ¬β]. Then
Gep(G) is a GEP.

• There is a 1-1 correspondence between GEPs and belief
algebras on 2W .

Then, we have the following theorem.

Theorem 4. Each GEP is equivalent to a theory in LB .

Example 1. Suppose L has two propositional variables a and
b and W = {ω1 = a ∧ b, ω2 = a ∧ ¬b, ω3 = ¬a ∧ b, ω4 =
¬a∧¬b}, where ωi can be seen as an interpretation. Take ω3

for instance: a is false and b is true in ω3. Let ϕ1 = a ∧ b,
ϕ2 = ¬a∧ b, ϕ3 = ¬a∧¬b. Assume that Bob’s current belief
information is as follows:
• Bob believes ϕ1, or equivalently, Bob thinks ϕ1 is more

believable than ¬ϕ1.
• Bob thinks ϕ2 is more believable than ϕ3.

In terms of practical applications, we can think that variable a
represents the statement “the thing at a distance is an animal”
and variable b represents “the thing at a distance is black”;
Bob’s current belief information is that “the thing at distance
is an animal and is black, and if it is not an animal then it is
still black”. This belief information can be characterized by
a theory CnB(Γ), where Γ = {PB(ϕ1,¬ϕ1), PB(ϕ2, ϕ3)}.
The corresponding belief algebra can be generated from
[ϕ1] � [¬ϕ1] and [ϕ2] � [ϕ3] with (A0)-(A4). For the sake
of brevity, we use (12, 34) to represent {ω1, ω2} � {ω3, ω4},
and, similarly, (3, 4) for {ω3} � {ω4}. We then have

G1 = {(12, 34), (12, 3), (12, 4), (123, 4), (124, 3)

(3, 4)} ∪ {(U,∅) | U ⊆W,U 6= ∅}

The corresponding GEP is Ψ = {(ϕ | ψ) | [ϕ ∧ ψ] � [¬ϕ ∧
ψ]}. This GEP is equivalent to the theory CnB(Γ).

Note each epistemic state is also a GEP [19], we have the
following corollary.

Corollary 1. Each epistemic state can be represented as a
theory of LB .

Example 2. Recall that each epistemic state is equivalent to
a total preorder on worlds. Suppose Ψ∗ is the epistemic state
induced by ω1 ≺ ω2 ≺ ω3 ≺ ω4 via (ES1) and (ES2). Then
it is not difficult to verify that the GEP Ψ in Example 1 is a
subset of Ψ∗. The corresponding belief algebra of Ψ∗ is

G2 = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4), (1, 23),

(1, 24), (1, 34), (1, 234), (2, 34), (12, 3), (12, 4),

(12, 34), (13, 2), (13, 4), (13, 24), (14, 2), (14, 3),

(14, 23), (23, 4), (24, 3), (123, 4), (124, 3),

(134, 2)} ∪ {(U,∅) | U ⊆W,U 6= ∅}

The corresponding theory representation in LB is Γ∗ =
{PB(ϕ,ψ) | [ϕ] � [ψ] holds for G2}, and Γ∗ and Ψ∗ are
equivalent in characterizing belief information.

IV. RELATED WORK

The representation of belief information is one of the
fundamental problems in the knowledge representation and
reasoning field. There are different ways of representing
beliefs in the literature which fall into two categories: logic-
based and measure-based. The former mainly describes belief
information with formulas or sets of formulas [2], [11], and
the latter with degrees of credibility of information by some



measure [20]–[22]. This paper follows the logic-based meth-
ods. The AGM framework [2] uses a belief set (i.e., a theory
of the background language) to represent belief information.
Later, in [3], a belief set under a propositional logic is replaced
with an equivalent formula to simplify the representation. In
DP framework [4], it was argued that belief sets should be
replaced by epistemic states to characterize iterated belief
revision, while Meng et al. [19], argue that general epistemic
states (GEPs) are more appropriate than epistemic states in
describing incomplete belief information. Meanwhile, as a
enormous impact of the AGM and DP frameworks, researchers
continue working on representing belief information and belief
change. Souza et al. [23] consider how well-known postulates
from iterated belief revision theory can be characterized by
means of belief bases and their counterpart in a dynamic
epistemic logic. Qi et al. [24] investigate belief revision in
possibilistic logic, which is a weighted logic proposed to deal
with incomplete and uncertain information. Gabbay et al. [25]
propose a belief revision approach for families of (non-
classical) logics whose semantics are first-order axiomatisable.
On the other hand, instead of extending the DP framework
to more background languages, in this paper, we give a
rigorous logical characterization of epistemic states and GEPs
by introducing a binary relation on formulas. It is worth noting
that Brown et al. [10] define a hierarchy of modal logic that
captures logical features of Bayesian belief revision, which is
a combination of classical modal logic and Bayesian statistics.
However it falls within the measure-based method and is
irrelevant to the AGM framework.

V. CONCLUSION

This paper proposed a novel logic system to represent
belief information of the agent. We constructed the language
and axioms for the logic system and showed the soundness
and completeness of the logic system, which means it is
readily usable for performing iterated revision. We illustrated
its representation power by proving that a general epistemic
state can be naturally represented as a theory in this logic
system. In the future, we would like to consider devising
iterated revision frameworks based on this logic system.

ACKNOWLEDGMENT

We thank anonymous reviewers for their helpful comments
and suggestions.

REFERENCES

[1] P. Peppas, “Belief revision,” in Handbook of Knowledge Representation,
2008, vol. 3, pp. 317–359.

[2] C. E. Alchourron, P. Gärdenfors, and D. Makinson, “On the logic of
theory change: Partial meet contraction and revision functions,” The
Journal of Symbolic Logic, vol. 50, no. 2, pp. 510–530, 1985.

[3] H. Katsuno and A. O. Mendelzon, “Propositional knowledge base
revision and minimal change,” Artificial Intelligence, vol. 52, no. 3, pp.
263–294, 1991.

[4] A. Darwiche and J. Pearl, “On the logic of iterated belief revision,”
Artificial Intelligence, vol. 89, no. 1, pp. 1–29, 1997.

[5] Y. Jin and M. Thielscher, “Iterated belief revision, revised,” Artificial
Intelligence, vol. 171, no. 1, pp. 1–18, 2007.

[6] S. Benferhat, S. Lagrue, and O. Papini, “Revision of partially ordered
information: Axiomatization, semantics and iteration,” in IJCAI, 2005,
pp. 376–381.

[7] L. H. Tamargo, M. A. Falappa, A. J. Garcı́a, and G. R. Simari, “A
change model for credibility partial order,” in SUM, 2011, pp. 317–330.

[8] J. Ma, S. Benferhat, and W. Liu, “Revising partial pre-orders with partial
pre-orders: A unit-based revision framework,” in KR, 2012, pp. 633–637.

[9] J. P. Delgrande, “Revising beliefs on the basis of evidence,” International
Journal of Approximate Reasoning, vol. 53, no. 3, pp. 396–412, 2012.
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