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Abstract
Traditional logic-based belief revision research fo-
cuses on designing rules to constrain the behav-
ior of revision operators. Frameworks have been
proposed to characterize iterated revision rules, but
they are often too loose, leading to multiple revi-
sion operators that all satisfy the rules under the
same belief condition. In many practical applica-
tions, such as safety critical ones, it is important to
specify a definite revision operator to enable agents
to iteratively revise their beliefs in a deterministic
way. In this paper, we propose a novel framework
for iterated belief revision by characterizing belief
information through preference relations. Semanti-
cally, both beliefs and new evidence are represented
as belief algebras, which provide a rich and expres-
sive foundation for belief revision. Building on tra-
ditional revision rules, we introduce additional pos-
tulates for revision with belief algebra, including
an upper-bound constraint on the outcomes of revi-
sion. We prove that the revision result is uniquely
determined given the current belief state and new
evidence. Furthermore, to make the framework
more useful in practice, we develop a particular al-
gorithm for performing the proposed revision pro-
cess. We argue that this approach may offer a more
predictable and principled method for belief revi-
sion, making it suitable for real-world applications.

1 Introduction
Updating or revising the beliefs of an agent in light of new
evidence is a fundamental process in both everyday life and
scientific activities. For instance, Newton’s laws of motion
were widely accepted for centuries until discoveries at very
small scales or very high speeds revealed their limitations.
Similarly, our knowledge is continuously updated and en-
riched through learning and communication. To formalize
this process, researchers in artificial intelligence have devel-
oped the subfield of belief change (see, e.g., [Doyle, 1979;
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Harper, 1976]). Among the most influential contributions to
this field is the AGM framework [Alchourron et al., 1985],
which has inspired numerous extensions and applications
in areas such as game theory and argumentation [Williams,
1996; van Harmelen et al., 2008; Fermé and Hansson, 2011;
Diller et al., 2015; Zhang, 2010].

Motivation The AGM framework addresses various forms
of belief change, including belief revision, which is of partic-
ular interest in this paper. The AGM framework, along with
its various subsequent developments, aims to update a cur-
rent belief state to a new one when new evidence is acquired.
This process can be formally described syntactically as revis-
ing a set of logical formulas (belief set) with a single logical
formula (new evidence) [Alchourron et al., 1985]. Alterna-
tively, it can be characterized semantically using preferences
over possible worlds (total preorder) [Katsuno and Mendel-
zon, 1991], where the revision process involves updating
these preferences based on new evidence. Furthermore,
belief revision based on partial preorders and iterated be-
lief revision have been extensively studied [Lehmann, 1995;
Boutilier, 1996; Darwiche and Pearl, 1997; Nayak et al.,
2003; Booth and Chandler, 2016; Aravanis et al., 2019; Kern-
Isberner et al., 2024]. Researchers have primarily focused on
how to constrain belief revision behaviors through postulates
or how to characterize revision with new semantics, leading
to the proposal of various rule systems [Liberatore, 2024;
Bonanno, 2025]. These rule systems are evaluated from
different perspectives to build a comprehensive framework.
However, these rule systems are often too loose, resulting
in multiple revision operators that all satisfy the same set
of rules, which might not be desirable in practice. For ex-
ample, in scenarios where multiple intelligent agents collab-
orate in urban traffic management, their initial beliefs are
aligned. Upon acquiring new traffic condition information,
these agents must update their traffic control strategies deter-
ministically so that they maintain aligned beliefs, otherwise
the transportation system might descend into chaos.

Contributions The goal and main contribution of this pa-
per is not to establish a new rule system for belief revision,
but to explore a simple and effective way to represent belief
information in more depth, and to propose a definite revi-
sion operator suitable for applications requiring determinis-
tic revision. To this end, we use belief algebra (introduced



in [Meng et al., 2015]) as the foundational tool for represent-
ing belief information. Unlike preorders over worlds, a belief
algebra represents belief information as a preference relation
over subsets of worlds. In our framework, both the current
belief state and the new evidence are represented as belief
algebras. Specifically, the iterated belief revision process is
modeled as revising a belief algebra G1 with another belief
algebra G2 to produce a new belief algebra G3. By analyzing
the structural properties of a belief algebra, we propose a set
of revision postulates, including an upper bound constraint on
the outcomes of revision, and prove that these postulates in-
herently induce a unique revision operator. Additionally, we
discuss the algorithmic implementation of this iterated belief
revision framework, providing practical support for designing
agents with belief revision capabilities in applications.

Organization The rest of the paper is organized as follows:
Section 2 discusses related work and Section 3 introduces ba-
sic knowledge. Section 4 explores properties of belief alge-
bras, and Section 5 considers a special case of revision with
a belief algebra. Section 6 extends the discussion to general
cases and Section 7 describes the practical algorithm. Finally,
Section 8 concludes the paper.

2 Related Work
Various research efforts have focused on representing belief
information in iterated revision. Spohn [1988] introduced
the concept of ordinal conditional function (OCF) to encode
preference information over worlds and developed a process
called conditionalization to revise OCFs. Williams [1994]
proposed a formula-based counterpart to OCF, mapping for-
mulas to ordinals based on their resistance to change. Dar-
wiche and Pearl [1997] advanced the field by representing
belief information as total preorders on worlds and extend-
ing the AGM framework with four postulates to characterize
iterated revision.

Several researchers have improved the DP (Darwiche and
Pearl) framework’s settings. Benferhat et al. [2005] used par-
tial preorders, while Peppas and Williams [2014] employed
semiorders. Ma et al. [2015] revised epistemic states with
partial epistemic states. Andrikopoulou et al. [2025] dis-
cussed belief revision under filters that are subsets of par-
tially ordered sets. Benferhat et al. [2000] enhanced the
representation of new evidence by using an epistemic state,
proposing postulates for minimal-model preserving opera-
tors and proving the uniqueness of the revision result given
a total preorder and a new total preorder as evidence. This
aligns with our discussion in Section 5, as their operator sat-
isfies (RE1)–(RE3). Meanwhile, new frameworks and se-
mantic structures continue to be proposed [Liberatore, 2024;
Bonanno, 2025].

Many works aim to define the most “reasonable” revision
rules, yet achieving consensus on rationality remains chal-
lenging. These debates often resemble philosophical dis-
cussions, focusing on abstract principles rather than prac-
tical implementations. The rationality of the basic AGM
rules has been questioned [Aravanis, 2023]. Sauerwald and
Thimm [2024] considered the realizability of AGM revi-
sion and contraction operators in Epistemic Spaces. Some

researchers, such as [Booth and Meyer, 2006; Jin and
Thielscher, 2007; Nayak et al., 2003], have observed that the
DP framework can produce counter-intuitive revision results.
To address that issue, they proposed modifications or addi-
tions to the DP postulates. For instance, Nayak, Pagnucco,
and Peppas [2003] introduced conjunction postulates, treat-
ing consistent evidences as order-independent, while Jin and
Thielscher [2007] proposed a weaker independence postulate.
Notably, these works primarily focus on rule construction,
with limited attention to operator selection.

While the exploration of revision rules continues, the po-
tential and application prospects of belief revision have also
received significant attention [Hunter and Boyarinov, 2022;
Baroni et al., 2022]. This shift reflects a growing interest
in leveraging belief revision for practical, real-world prob-
lems. In applications such as constrained differential pri-
vacy [Liu et al., 2023] and text generation by large language
models [Wilie et al., 2024], the focus has shifted towards ap-
plications of revision. In industrial agent design, selecting
a specific update algorithm is crucial to enable agents to it-
eratively refine their beliefs. To address this, our work fo-
cuses on representing belief information through belief alge-
bra building on [Meng et al., 2015], and proposes a unique
revision operator by strengthening revision rules in a natural
way, aiming to provide a deterministic and practical solution
for real-world applications.

3 Preliminaries
We recall some necessary knowledge for what will follow.

3.1 Belief as A Total Preorder
In this paper, we restrict our discussion to belief revision in a
finite propositional language L. We denote by W the set of
all (possible) worlds (i.e., interpretations).

For each propositional formula ψ, we denote by [ψ] the set
of all worlds of ψ, i.e., [ψ] = {ω ∈ W | ω |= ψ}. We will
also use a consequence operator Cn(Γ) = {ϕ ∈ L | [Γ] ⊆
[ϕ]} to obtain the set of formulas implied by Γ.

A (partial) preorder � on A is a binary relation on A that
is reflexive and transitive. A preorder � is called total if any
two elements in A are comparable under �. We write x ∼ y
if x � y and y � x, and x ≺ y if x � y but y 6� x. The strict
part of a preorder � is the set ≺= {(x, y) | x ≺ y} ⊆�.

A belief set K is a set of formulas in L that is deductively
closed, i.e., Cn(K) = K. Generally, belief revision is the
process of changing a current belief state with a new piece of
evidence, where the current belief state and the new evidence
can be represented in different ways. For example, in the
AGM framework, the current belief state is represented as a
belief set and the new evidence is represented as a formula.

When belief revision needs to be done sequentially, known
as iterated belief revision, the representation mechanism of
the AGM framework is not suitable anymore. A more sophis-
ticated structure known as epistemic state is then used to rep-
resent belief information. In their original paper, Darwiche
and Pearl [1997] captured the concept of an epistemic state in
terms of a revision operator. Particularly, an epistemic state is
a set of beliefs and conditional beliefs satisfying several pos-
tulates. A conditional belief has the form (β | α), where α, β



are formulas in L. An agent has a conditional belief (β | α)
if she will believe β whenever she believes α. Within the DP
framework, an epistemic state can be characterized semanti-
cally as a total preorder on worlds as follows.
Lemma 1 ( [Darwiche and Pearl, 1997]). Suppose Ψ consists
of a belief set Bel(Ψ) and several conditional beliefs, then Ψ
is an epistemic state iff there is a total preorder � on worlds
such that:

(ES1) φ ∈ Bel(Ψ) iff there is a world ω in [φ] such that
ω ≺ ω′ for all ω′ ∈ [¬φ].
(ES2) (β | α) ∈ Ψ iff there is a world ω in [α ∧ β] such
that ω ≺ ω′ for all ω′ ∈ [α ∧ ¬β].

3.2 Belief as A Belief Algebra
To provide a unified representation of belief information, the
concept of belief algebra was introduced in [Meng et al.,
2015]. It is a class of ordering structures on 2W , the power
set of possible worlds, which can intuitively capture the be-
lief preference of an agent, and is actually more general than
total preorder (see Section 5).
Definition 1 ([Meng et al., 2015]). Suppose � is a binary
relation on 2W , and write RW = {(U, V ) | U, V ⊆ W,U ∩
V = ∅}. Then (2W ,�) is called a belief algebra (BA) if it
satisfies the following rules (U, V, U1, V1, U2, V2 ⊆W ):

(A0)�⊆ RW .
(A1) U � ∅ iff U 6= ∅.
(A2) If U � V , then V 6� U .
(A3) If U1 ⊇ U � V ⊇ V1 and U1 ∩ V1 = ∅, then
U1 � V1.
(A4) If U = U1∪V1 = U2∪V2 and U1 � V1, U2 � V2,
then U1 ∩ U2 � V1 ∪ V2.

Roughly speaking, � directly describes the belief prefer-
ence of agents in a semantic way. For instance, [φ] � [¬φ]
means that φ is more believable than ¬φ, and if [φ] and [ψ]
are incomparable in�, then the agent has no idea which one
is more believable. (A0) shows that we only need to compare
disjoint subsets of W . (A1) shows that each nonempty set
has a higher preference level than the empty set. (A2) shows
that � is a strict ordering. (A3) shows that � satisfies cer-
tain transitivity. (A4) considers the case where if φ is more
believable than ¬φ and ψ is more believable than ¬ψ, then
φ ∧ ψ is more believable than ¬(φ ∧ ψ).

Traditionally, the semantic characterization of an epistemic
state is often represented as a total preorder on W , where W
is the set of all possible worlds. In contrast, a belief algebra
is defined as an ordering relation on 2W , the power set of W .
Interestingly, a total preorder onW can be naturally extended
to a belief algebra on 2W . This relationship can be formalized
in the following theorem:
Theorem 1 ([Meng et al., 2015]). Let � be a total preorder
onW . Define a binary relation� on 2W as follows: U � V
if and only if U ∩ V = ∅ and ∃ω1 ∈ U such that ∀ω2 ∈
V, ω1 ≺ ω2. Then (2W ,�) is a belief algebra.

This theorem demonstrates that the structure of a total pre-
order onW can be lifted to a belief algebra on 2W , preserving

the agent’s belief preferences in a more expressive and gener-
alized framework. The relation� captures the intuition that a
subset U is preferred over V if there exists at least one world
in U that is strictly preferred to all worlds in V . This exten-
sion provides a natural bridge between traditional epistemic
states and the more general belief algebra framework.
Definition 2 (Complete Belief Algebra (CBA)). A belief al-
gebra (2W ,�) is called a complete belief algebra (CBA) if it
can be generated from a total preorder� on W in the manner
described in Theorem 1.

Complete belief algebras provide a natural connection be-
tween total preorders on W , and the more expressive frame-
work of belief algebras. They capture the intuition that belief
preferences over subsets of worlds can be fully determined by
a total preorder on individual worlds.
Example 1. Suppose ω1 ∼ ω2 ≺ ω3 ∼ ω4 is a total pre-
order and thus an epistemic state. Let W = {ω1, ω2, ω3, ω4}
and Tr(W ) = {(U, ∅) | U ⊆ W,U 6= ∅}. For the sake of
brevity we use (x, y) for representing {ωx} � {ωy}, (xy, z)
for {ωx, ωy} � {ωz}, and so on. Then this total preorder is
equivalent to a complete belief algebra G as follows:
G = {(1, 3), (1, 4), (2, 3), (2, 4), (1, 34), (2, 34)

(12, 3), (12, 4), (12, 34), (123, 4), (124, 3)} ∪ Tr(W ).

4 Exploring Belief Algebra in More Depth
Given two belief algebras G1 = (2W ,�1) and G2 =
(2W ,�2) on W , we denote by G1 ⊆ G2 iff�1⊆�2. Also,
we will not distinguish between G1 ∪ G2 and �1 ∪ �2,
and G1 ∩ G2 and�1 ∩ �2, whenever it is self-explanatory
based on context. For each belief algebra G = (2W ,�),
Tr(W ) = {(U, ∅) | U ⊆ W,U 6= ∅} is always contained in
� by (A1). It is not difficult to verify that (2W , T r(W )) is
a belief algebra. Then for each belief algebra G on W , we
always have (2W , T r(W )) ⊆ G.

A subset of RW (defined in Definition 1) can generate a
belief algebra.
Definition 3. Given Ω ⊆ RW , we denote by Gen(Ω) the
smallest subset of RW that contains Ω and is closed under
the rules (A1), (A3) and (A4) used for expansion.
Example 2. Suppose W = {ω1, ω2, ω3, ω4} and Ω =
({ω1, ω2}, {ω3, ω4}). Then for each belief algebra (2W ,�),
if Ω ∈� we have {ω1, ω2} � {ω3, ω4}. Again, for the
sake of brevity we use (x, y) for representing {ωx} � {ωy},
(xy, z) for {ωx, ωy} � {ωz}, and so on. With respect
to (A3) we have that (123, 4), (124, 3) are all in �, and by
(A4) (12, 34) ∈�. Then it can be verified that Gen(Ω) =
{(12, 34), (123, 4), (124, 3)} ∪ Tr(W ) is the smallest belief
algebra which contains Ω.

If Gen(Ω) also satisfies (A2), then (2W ,Gen(Ω)) is a be-
lief algebra by definition, and we will also use Gen(Ω) to
denote this belief algebra. Here we always assume that the
agent is rational and Gen(Ω) is always a belief algebra when
Ω represents some belief information. Given Ω, Gen(Ω) can
be obtained by closing Ω under (A1), (A3), and (A4).

With the operator Gen(·), one can see that each CBA is
entirely determined by preferences on the sets consisting of a
single world.



There is a 1-1 correspondence between CBAs and total pre-
orders, which is given as follows.
Lemma 4 ([Meng et al., 2015]). There is a 1-1 correspon-
dence between CBAs and total preorders:

• Suppose � is a total preorder on W . Let U � V iff
∃ω1 ∈ U s.t. ∀ω2 ∈ V , ω1 ≺ ω2. Then (2W ,�) is a
CBA.

• Suppose (2W ,�) is a CBA. Let ω1 ≺ ω2 iff {ω1} �
{ω2}, and ω1 ∼ ω2 iff {ω1} 6� {ω2} and {ω2} 6�
{ω1}. Then �:=≺ ∪ ∼ is a total preorder on W .

Each CBA is totally decided by preferences on the sets con-
sisting of a single world, which is implied straightforwardly
by Lemma 4.
Corollary 1. Suppose G = (2W ,�) and G′ = (2W ,�′)
are CBAs, then:

• Gen(Ω) = G, where Ω = {({ω}, {ω′}) | {ω} �
{ω′}}.

• If G and G′ have the same preferences on single world
sets, i.e., for any ω, ω′ ∈ W , ({ω}, {ω′}) ∈ G iff
({ω}, {ω′}) ∈ G′, then G = G′.

The following proposition shows how to construct new be-
lief algebras from existing belief algebras.
Proposition 1. Suppose G = (2W ,�) and G′ = (2W ,�′)
are belief algebras. ThenG∩G′ = (2W ,� ∩ �′) is a belief
algebra.

Proof. We only need to show that � ∩ �′ satisfies (A0)-
(A4). We take (A3) as an example, as the rest can be proven
in similar and/or simpler fashion. If (U, V ) ∈� ∩ �′, U1 ⊇
U, V ⊇ V1 and U1 ∩ V1 = ∅, then U1 � V1 and U1 � V1
since G1, G2 satisfy (A3). Hence (U, V ) ∈� ∩ �′. This
means that G ∩G′ satisfies (A3).

Corollary 2. Suppose G = (2W ,�) is a belief algebra and
Ω ⊆�, andA is the set of all the belief algebras that contains
Ω. Then Gen(Ω) is a belief algebra, and Gen(Ω) =

⋂
A.

Proof. By Definition 3 and Ω ⊆ �, we have Gen(Ω) ⊆ G.
Then Gen(Ω) satisfies (A2), and Gen(Ω) is the smallest be-
lief algebra containing Ω. Thus, Gen(Ω) ∈ A and

⋂
A ⊆

Gen(Ω). On the other hand, by Proposition 1, we know that
any finite intersection of belief algebras is also a belief alge-
bra, and A contains only finite number of belief algebras be-
cause W is a finite set, so

⋂
A is a belief algebra containing

Ω. Then Gen(Ω) ⊆
⋂
A and we have Gen(Ω) =

⋂
A.

The following result unveils the structure of�, which con-
sists of levels of subsets of worlds.
Lemma 5 ([Meng et al., 2015]). Suppose (2W ,�) is a belief
algebra. Then there is a unique chain, called backbone, ∆ =
{U1 � U2 � U3 � · · · � Un}, such that:

(Ch1) {Ui}ni=1 is a partition of W , i.e., {Ui}ni=1 con-
sists of pairwise disjoint nonempty subsets of W and⋃n
i=1 Ui = W .

(Ch2) For each Ui, if V1, V2 are two disjoint nonempty
subsets of Ui, then V1 and V2 are incomparable in �,
i.e., (V1, V2) /∈� and (V2, V1) /∈�.

Figure 1: Illustration of the structure of the backbone {U1 � U2 �
· · · � Un} and supports of a belief algebra. The backbone forms
a partition of W , and according to (Ch2), V3 6� V4 and V4 6� V3,
because V3 ∩V4 = ∅ and V3, V4 ⊆ Un. Here, the supports w.r.t. the
backbone are I(V1) = U1, I(V2) = U2, and I(V3) = I(V4) = Un.

The above lemma shows that the backbone is the core
structure of a belief algebra. (Ch2) shows that for each Ui
in a backbone, any subsets of Ui can not be compared with
one another. In terms of belief preferences, this means that an
agent has no preference on subsets of Ui. Another important
concept is the support of a subset ofW w.r.t. some backbone.

Definition 4. Let ∆ = {U1 � U2 � U3 � · · · � Un} be
the backbone of a belief algebra. The support of a nonempty
set V ⊆W w.r.t. ∆ is defined as I(V ) = Ui, where V ∩Ui 6=
∅ and ∀j 6= i, if V ∩ Uj 6= ∅, Ui � Uj . That is, I(V ) is the
largest Ui under� in the backbone such that V ∩ Ui 6= ∅.

Figure 1 gives an illustration of the above definitions.
Moreover, the preferences of an agent are “consistent” with
the backbone in the sense of property (1) in Lemma 6 that
follows.

Lemma 6 ([Meng et al., 2015]). The relations between belief
algebras and their backbones are as follows:

(1) Suppose G = (2W ,�) is a belief algebra, then U � V
only if I(U)� I(V ).

(2) Suppose G = (2W ,�) is a complete belief algebra,
then U � V if and only if I(U)� I(V ).

(3) Suppose G = (2W ,�) is a belief algebra, and ∆ =
{U1 � U2 � U3 � · · · � Un} is its back-
bone. Then there is a unique complete belief alge-
bra G′ = (2W ,�′) containing G and having the same
backbone with G. Moreover, �′= {(U, V ) ∈ RW |
U, V 6= ∅, I(U)� I(V )} ∪ Tr(W ).

The above lemma shows that there are different belief al-
gebras that have the same backbone ∆, and there is a unique
complete belief algebra with ∆ as its backbone, viz., the
largest one containing all the pairs (U, V ) s.t. I(U)� I(V ).
Roughly speaking, the backbone of a belief algebra is the
“core” belief information that reflects the main preferences
of the agent. Taking Figure 1 as an example, a belief algebra
G with {U1 � U2 � U3 � · · · � Un} as its backbone
may or may not contain V1 � V2, but if it is CBA, then it
must contain V1 � V2, and it should never contain V2 � V1
because I(V1) = U1 � U2 = I(V2).

Definition 5. Suppose G = (2W ,�) is a belief algebra.
Then we denote by Com(G) the complete belief algebra that
containsG and has the same backbone asG. SupposeG1 and



Figure 2: Illustration of the structure of BAL.

G2 are both belief algebras. Then we write G1 ≤ G2 if these
two belief algebras have the same backbone and G1 ⊆ G2.
Example 3. Let L be a propositional language with
two variables {b, f} and W = {ω1 := b ∧ f, ω2 :=
b ∧ ¬f, ω3 := ¬b ∧ f, ω4 := ¬b ∧ ¬f}. Suppose Bob’s
current belief state is represented as a total preorder
ω1 ∼ ω2 ≺ ω3 ∼ ω4, and the new evidence is a formula
µ such that the worlds that entail µ are represented as
[µ] = {ω1, ω4}. In this situation, Bob holds a new pref-
erence that [µ] � [¬µ]. These belief preferences can be
represented using belief algebra. Following the notation
in Example 2, Bob’s current belief information can be rep-
resented as: Gen({(1, 3), (1, 4), (2, 3), (2, 4)}). Similarly,
the new evidence µ can be represented as Gen({(14, 23)}).
Note that Gen({(1, 3), (1, 4), (2, 3), (2, 4)}) is a com-
plete belief algebra (CBA), while Gen({(14, 23)})
is not a CBA. The backbone of the former is
{ω1, ω2} � {ω3, ω4}, while the backbone of the latter is
{ω1, ω4} � {ω2, ω3}. Moreover, Com(Gen({(14, 23)})) =
Gen({(1, 2), (1, 3), (4, 2), (4, 3)}).

Note that G1 ≤ G2 is different from G1 ⊆ G2. It actually
means that G1 and G2 contain the same “core” belief infor-
mation, but G1 is “less informational” than G2, in the sense
that any revision result of G1 should be contained in that of
G2, as we will see later in the postulate (RA5). Let BAL be
the set of belief algebras over the worlds of L. It is easy to
check that ≤ as defined above is a partial order on BAL. We
also use BAL to denote the partial order set (BAL,≤).
Theorem 2. Let ∆ = {U1 � U2 � U3 � · · · � Un}
be a backbone and denote by BA(∆) = {G ∈ BAL | ∆
is the backbone of G} the set of belief algebras having ∆ as
backbone. Suppose G1, G2 ∈ BA(∆). Then:
(1) G1 ∩G2 ∈ BA(∆).
(2) Gen(G1 ∪G2) is a belief algebra, and Gen(G1 ∪G2) ∈

BA(∆).
Remark 1. Theorem 2 shows that BA(∆) is a lattice that
contains the smallest element Gen(∆) and the largest ele-
ment Com(Gen(∆)). Here, a lattice is a set equipped with
a partial order such that every two elements have a unique
supremum (also called the least upper bound) and a unique
infimum (also called the greatest lower bound). Furthermore,
BAL is divided into disjoint parts by the backbone, and each
part is a lattice under ≤ (see Figure 2).

Example 4. Suppose W = {ω1, ω2, ω3, ω4}. Let
G1 = {(123, 4)} ∪ Tr(W ), G2 = {(123, 4), (12, 4)} ∪

Tr(W ), G3 = {(123, 4), (13, 4)} ∪ Tr(W ), G4 =
{(123, 4), (12, 4), (13, 4), (23, 4), (1, 4), (2, 4), (3, 4)} ∪
Tr(W ). Then G1, G2, G3, G4 are all belief algebras, and
they all have the same backbone ∆ = {ω1, ω2, ω3} � {ω4}.
G4 is a complete belief algebra, and G1 ≤ G2 ≤ G4,
G1 ≤ G3 ≤ G4, but G2, G3 can not be compared by ≤.
Furthermore, G1 = Gen(∆) is the smallest element in
BA(∆), and G4 = Com(G1) is the biggest one.

5 Special Case: Revising CBA with CBA
Before discussing the general case of revision with belief
algebras, we first consider a simplified scenario where the
agent’s current belief, the new evidence, and the revision re-
sult are all represented as complete belief algebras (CBAs;
see Definition 2). This process is equivalent to revising an
existing total preorder �1 by a new total preorder �2 to ob-
tain a revised total preorder �3.

Inspired by existing research (e.g., [Alchourron et al.,
1985; Darwiche and Pearl, 1997; Ma et al., 2015]), we pro-
pose the following revision rules for this setting. The revi-
sion of a total preorder by another total preorder, denoted as
�1 ◦ �2=�3, has been studied in [Benferhat et al., 2000]
and is known as a minimal-model preserving operator. This
operator can be equivalently characterized by the following
postulates:

(RE1) �3 is a total preorder.

(RE2) ≺2⊆≺3, where ≺i= {(x, y) | x �i y ∧ y 6�i x}.
(RE3) If ω ∼2 ω

′, then: ω ≺3 ω
′ if and only if ω ≺1 ω

′.

The postulate (RE1) is natural by underlying setting. The
postulate (RE2) requires that the new belief information (cor-
responding to the strict part of the new total preorder) must
be fully incorporated into the revision result. Finally, (RE3)
ensures that for worlds with equal (non)preference under �2,
the preference relation from �1 is preserved in �3. This al-
lows the revision process to retain more of the original belief
information while incorporating the new evidence.

Example 5. Following Example 3, Bob’s current belief is
�1= {ω1 ∼ ω2 ≺ ω3 ∼ ω4} which has {(ω1 ≺ ω3), (ω1 ≺
ω4), (ω2 ≺ ω3), (ω2 ≺ ω4)} as its strict part. Now, instead
of considering revision by a formula, we consider revision by
another total preorder �2= {ω1 ∼ ω2 ∼ ω3 ∼ ω4}. Then
�2 has an empty strict part, which means that�2 cannot lead
to any new preference. In this sense, all the strict orderings of
�1 can be kept into the revision result. It is natural that �1

◦ �2=�1. Suppose instead �2= {ω4 ≺ ω3 ≺ ω2 ≺ ω1}.
Then, in �2, all worlds are ordered by ≺. In this sense, no
information in �1 is useful and �1 ◦ �2=�2. On the other
hand, if �2= {ω2 ∼ ω4 ≺ ω1 ∼ ω3}. Then, ω2 and ω4

(ω1 and ω3 respectively) can not be distinguished in �2, but
ω2 ≺ ω4 and ω1 ≺ ω3 are in �1. Following the information
in �1, Bob should hold ω2 ≺ ω4 and ω1 ≺ ω3 in �1 ◦ �2.
Then �1 ◦ �2= {ω2 ≺ ω4 ≺ ω1 ≺ ω3}.

Interestingly, it can be shown that revision results satisfy-
ing the above postulates are unique.

Theorem 3. Suppose �1 and �2 are total preorders. Then
there is a unique revision operator satisfying (RE1)-(RE3).



Proof. For any ω, ω′ ∈ W , we define a binary relation � on
W as follows.

• ω ≺ ω′ iff ω ≺2 ω
′, or ω ∼2 ω

′ and ω ≺1 ω
′.

• ω ∼ ω′ iff ω ∼1 ω
′ and ω ∼2 ω

′.

It is not difficult to check that � is a total preorder. Next
we only need to show that if an operator ◦ satisfies (RE1)-
(RE3) then the revision result of �1 ◦ �2 is exactly �. Let
�3=�1 ◦ �2. By (RE1), �3 is a total preorder. Since �2 is
a total preorder, for any ω, ω′ ∈ W , exactly one of ω ≺2 ω

′,
ω′ ≺2 ω, and ω ∼2 ω will happen. If ω ≺2 ω

′ (ω′ ≺2 ω,
respectively) then ω ≺3 ω

′ (ω′ ≺3 ω, respectively) by (RE2).
If ω ∼2 ω

′ then we have ω ≺3 ω
′ iff ω ≺1 ω

′ by (RE3). That
is equivalent to say, if ω ∼2 ω

′ and ω ≺1 ω
′, then ω ≺3 ω

′,
and if ω ∼2 ω

′ and ω ∼1 ω
′, then ω ∼3 ω

′. In the end, we
have ω ≺3 ω

′ iff ω ≺ ω′, and ω ∼3 ω
′ iff ω ∼ ω′. Therefore,

�3=�.

Remark 2. However, the above revision framework has the
great limitation of not being able to deal with more general
cases such as the new evidence or even the current belief state
is not a total preorder, which is common in real-world appli-
cations, e.g., the agent only holds incomplete belief informa-
tion. Therefore, it is necessary to consider other solutions
without such limitation.

6 Revision with Belief Algebras
In this section, we extend our discussion to a more general
framework of iterated belief revision based on a belief alge-
bra, rather than restricting ourselves to CBAs. This frame-
work allows for a richer representation of belief states and
supports more flexible revision processes. For simplicity, we
assume that the agent is rational (i.e. both her belief and the
new evidence do not contain “conflicting information”). If
not specified otherwise, we always suppose that the agent’s
current belief state is a belief algebra G1, the new evidence
is a belief algebra G2, and the revision result is also a belief
algebra denoted by G1 • G2, where • is a revision operator
from BAL ×BAL to BAL.

To give postulates to characterize rational revisions, fol-
lowing literature, e.g., [Alchourron et al., 1985; Darwiche
and Pearl, 1997; Jin and Thielscher, 2007], we first assume
that new evidence has a higher preference, that is, belief in-
formation of G2 is more believable than G1. Then G2 should
be kept in G1 •G2, and we have:

(RA1) G2 ⊆ G1 •G2

Since G1 and G2 collectively cover all the agent’s belief
information, we assume that G1 • G2 is entirely determined
by G1 and G2 and is generated by some subset of G1 ∪ G2.
This leads to the following postulate:

(RA2) There is an Ω ⊆ G1∪G2 s.t. G1•G2 = Gen(Ω).

(RA2) requires that the revision result cannot be generated
with information outside G1 ∪ G2, and if G1 and G2 have
conflicting information, one should choose a consistent sub-
set in order to generate a belief algebra.

Notice that a complete belief algebra is equivalent to a total
preorder on worlds. Revising a complete belief algebraG1 by

another complete belief algebra G2 is equivalent to revising a
total preorder by another total preorder. The following postu-
lates (RA3) and (RA4) are thus inspired by (RE1) and (RE3)
for revising total preorders in Section 5, respectively.

(RA3) SupposeG1 andG2 are complete belief algebras.
Then G1 •G2 is also a complete belief algebra.
(RA4) Suppose G1 = (2W ,�1) and G2 = (2W ,�2)
are complete belief algebras, and I2({ω}) = I2({ω′})
in G2. Then ({ω}, {ω′}) ∈ G1 •G2 iff {ω} �1 {ω′}.

Theorem 4. Suppose • satisfies (RA1)–(RA4), and G1 =
(2W ,�1) andG2 = (2W ,�2) are complete belief algebras.
Λ(G1, G2) = {({ω}, {ω′}) | {ω} �1 {ω′}, I2({ω}) =
I2({ω′})}. Then G1 • G2 = Gen(Λ(G1, G2) ∪ G2), and
the result of revising G1 by G2 is unique.

Proof. Suppose the corresponding total preorders of�1,�2

are �1,�2 respectively. Let �=�1 ◦ �2, where ◦ is
the operator which satisfies (RE1)-(RE3). Then � is a to-
tal preorder, and ω ≺ ω′ iff ω ≺2 ω′, or ω ∼2 ω′ and
ω ≺1 ω′. Since G1, G2 are CBAs, we have ω ≺2 ω′ iff
{ω} �2 {ω′}, ω ≺1 ω

′ iff {ω} �1 {ω′}, and ω ∼2 ω
′ iff

I2({ω} = I2({ω′}). We denote by G = (2W ,�) the corre-
sponding CBA of�. Then {ω} � {ω′} iff ω ≺ ω′. That is to
say, {ω} � {ω′} iff {ω} �2 {ω′}, or I2({ω}) = I2({ω′})
and {ω} �1 {ω′}. In summary, for any ω, ω′ ∈ W ,
({ω}, {ω′}) ∈ G iff ({ω}, {ω′}) ∈ G2 ∪ Λ(G1, G2). The
“if” part here shows Λ(G1, G2) ⊆ G and G2 ⊆ G, be-
cause G2 is a CBA and each CBA is totally decided by the
preferences on single world sets according to Corollary 1.
Then Gen(G2 ∪ Λ(G1, G2)) ⊆ G. The “only if ” part here
shows that if ({ω}, {ω′}) ∈ G, then we have ({ω}, {ω′}) ∈
G2 ∪ Λ(G1, G2), which means G ⊆ Gen(G2 ∪ Λ(G1, G2))
since G is also a CBA. Therefore, we have G = Gen(G2 ∪
Λ(G1, G2)).

To show that the result is unique, suppose that • is an oper-
ator on BLA which satisfies (RA1)–(RA4). Then we only
need to show that if G1 • G2 = G3 then G3 = G. By
(RA3), G3 is a CBA because G1 and G2 are CBAs. Let
G3 = (2W ,�3). Then ∀ω, ω′ ∈ W , one of the following
two cases is true.

(Case 1) If {ω} �2 {ω′} or {ω′} �2 {ω} then we have
{ω} �3 {ω′} or {ω′} �3 {ω}, respectively, by (RA1).
(Case 2) If {ω} 6�2 {ω′} and {ω′} 6�2 {ω} then
I2({ω}) = I2({ω′}) is holding in G2 by Proposition 4.
Therefore, {ω} �3 {ω′} iff {ω} �1 {ω′} by (RA4).

Therefore, we have ({ω}, {ω′}) ∈ G3 iff ({ω}, {ω′}) ∈ G2

or ({ω}, {ω′}) ∈ Λ(G1, G2). That is to say, ({ω}, {ω′}) ∈
G3 iff ({ω}, {ω′}) ∈ G. Recall that G and G3 are both
CBAs. Then we have G3 = G by Corollary 1.

This above theorem generalizes Theorem 3 and shows that,
under the postulates (RA1)-(RA4), the revision operator •
is deterministic when applied to complete belief algebras.
Specifically, the revision result G1 • G2 is uniquely deter-
mined by combining the preference relations from G1 and
G2 in a principled way. The set Λ(G1, G2) captures the pref-
erences from G1 that are consistent with the structure of G2,
ensuring that the revision process preserves as much of the



original belief information as possible while fully incorpo-
rating the new evidence. The following corollary establishes
a direct correspondence between the revision operator • for
complete belief algebras and the revision operator ◦ for their
equivalent total preorders.

Corollary 3. Suppose, G1 and G2 are complete belief alge-
bras, and �1 and �2 are their equivalent total preorders on
worlds, respectively. If • satisfies (RA1)-(RA4), and ◦ sat-
isfies (RE1)-(RE3), then the corresponding total preorder of
G1 •G2 is exactly �1 ◦ �2.

Proof. This conclusion follows intuitively, and we only pro-
vide a proof sketch.

Let �=�1 ◦ �2 and G = G1 •G2. Note that by the proof
of Theorem 4, the revision operator • under (RA1)-(RA4)
ensures that inG {ω} � {ω∗} iff either {ω} �2 {ω∗} (from
G2), or I2({ω}) = I2({ω∗}) and {ω} �1 {ω∗} (preserved
from G1).

On the other hand, by the proof of Theorem 3 the revision
operator ◦ defined by (RE1)-(RE3) ensures that ω ≺ ω∗ iff ei-
ther ω ≺2 ω

∗ (from�2) or ω ∼2 ω
∗ and ω ≺1 ω

∗ (preserved
from �1).

This structural correspondence guarantees thatG is exactly
the CBA corresponding to �1 ◦ �2 by Lemma 4.

Example 6. Suppose, ∆1 = {{ω1} � {ω2} � {ω3} �
{ω4}} and ∆2 = {{ω2} � {ω1, ω3} � {ω4}} are
backbones, then G1 = Gen(∆1) and G2 = Gen(∆2 ∪
{(1, 4), (3, 4)}) are complete belief algebras. In this sense,
Λ(G1, G2) = {(1, 3)}, and G1 • G2 = Gen({{ω2} �
{ω1} � {ω3} � {ω4}}), where {{ω2} � {ω1} � {ω3} �
{ω4}} is the backbone of G1 •G2.

For the case where G1 and G2 are possibly incomplete be-
lief algebras, we include the following postulate:

(RA5) If G1 ≤ G′1, G2 ≤ G′2 then G1 •G2 ⊆ G′1 •G′2.

Recall that G1 ≤ G′1 means that G1 ⊆ G′1 and G1 and G′1
have the same backbone. (RA5) means that if G1 and G2

contain less information than G′1 and G′2, respectively, and
they have the same core belief information (i.e., same back-
bones), then G1 • G2 also contains less belief information
than G′1 •G′2. From (RA5), the following proposition is easy
to verify.

Proposition 2. If • satisfies (RA5), then G1 • G2 ⊆
Com(G1) • Com(G2).

The above proposition shows that Com(G1)•Com(G2) is
an upper bound of G1 •G2 (under ⊆).

Furthermore, we suppose a rational agent will keep max-
imal information from G1 to G1 • G2 under (RA1)–(RA5),
which is a “minimal change” rule. Hence, we assume that
G1 • G2 is maximum in Com(G1) • Com(G2), i.e., there is
no belief algebra Gen(Ω) ⊆ Com(G1) •Com(G2) such that
G1 •G2 ⊂ Gen(Ω), where Ω ⊆ G1 ∪G2. Then we have the
following postulate.

(RA6) If Ω ⊆ G1 ∪ G2 and Gen(Ω) ⊆ Com(G1) •
Com(G2),G1•G2 ⊆ Gen(Ω), thenG1•G2 = Gen(Ω).

We arrive to one of the major results in this work:

Theorem 5. Suppose • satisfies (RA1)-(RA6), and G1, G2

are belief algebras. Then the revision result of G1 • G2

is unique, and G1 • G2 = Gen((G1 ∪ G2) ∩ Com(G1) •
Com(G2)).

Proof. Com(G1) • Com(G2) is a defined complete belief
algebra by Theorem 4 and • satisfies (RA1)-(RA6) . Since
(G1∪G2)∩Com(G1)•Com(G2) is a subset of Com(G1)•
Com(G2), Gen((G1 ∪G2)∩Com(G1) •Com(G2)) is a be-
lief algebra by Corollary 2. By (RA2), there is a Ω ⊆ G1∪G2

such thatG1 •G2 = Gen(Ω). By (RA5), we have Gen(Ω) ⊆
Com(G1) • Com(G2). Then, Ω ⊆ Com(G1) • Com(G2).
Furthermore, we have Ω ⊆ ((G1 ∪ G2) ∩ Com(G1) •
Com(G2)). As a result, we can conclude that G1 • G2 =
Gen(Ω) ⊆ Gen((G1 ∪G2)∩Com(G1) •Com(G2)), where
Gen((G1 ∪G2)∩Com(G1) •Com(G2)) is a belief algebra.
By (RA6), we haveG1 •G2 = Gen((G1∪G2)∩Com(G1)•
Com(G2)).

The above theorem shows that there is only one operator
that satisfies (RA1)–(RA6). The postulate (RA5) provides an
upper bound for the revision result. On the other hand, (RA6)
imposes a conditional maximality requirement on the revision
result, which, together with (RA5), leads to the uniqueness of
the revision operator •. In the next section, we will discuss
how to algorithmically compute the revision result of this op-
erator, providing a practical method for performing iterated
belief revision in the belief algebra framework.

7 A Practical Algorithm and Discussion
In this section, we provide a practical algorithm for com-

puting the revision result G1 • G2 based on the postulates
(RA1)–(RA6).

7.1 Algorithm
We begin with a direct characterization of the revision result.

Proposition 3. Suppose G1 and G2 are belief algebras, •
satisfies (RA1)–(RA6), and G∗ = Com(G1) • Com(G2).
Then G1 • G2 = Gen((G1 ∩ G∗) ∪ G2), and G1 ∩ G∗ =
{(U, V ) | U �1 V, and I∗(U)�∗ I∗(V )}.

Proof. By Theorem 5, we have G1 •G2 = Gen((G1∪G2)∩
G∗) = Gen((G1 ∩ G∗) ∪ (G2 ∩ G∗)). From (RA1) and
(RA5), we have G2 ⊆ G1 •G2 ⊆ G∗. Then G2 ∩G∗ = G2.
Then G1 • G2 = Gen((G1 ∩ G∗) ∪ G2). Moreover, as G∗
is a complete belief algebra, U �∗ V iff I∗(U) � I∗(V )
by Lemma 6. Hence, G1 ∩ G∗ = {(U, V ) | U �1 V, and
I∗(U)�∗ I∗(V )}.

Therefore, we can use Algorithm 1 to get G1 •G2.
In the first step of the algorithm, we need to compute

Com(G1) and Com(G2). Given a belief algebra G =
(2W ,�), to calculate Com(G), we need to obtain the back-
bone {U1 � · · · � Un} of G first. Let U1 =

⋂
{U ⊆

W | U � W \ U}, Wi+1 = Wi \ Ui and W1 = W . Then
Ui =

⋂
{U ⊆ Wi+1 | U � Wi+1 \ U}. It can be verified

that {U1 � · · · � Un} is indeed the backbone of G, and
more details can be found in [Meng et al., 2015]. With the
backbone of G, Com(G) = (2W ,�∗) can be constructed by



Algorithm 1: Definite revision on BAL.
In : Current belief algebra G1 and new evidence G2.
Out: Resulting belief algebra G1 •G2.

1 Calculate Com(G1) and Com(G2) by Definition 5;
2 G∗ ← Com(G1) • Com(G2) by Theorem 4;
3 G1 ∩G∗ ← {(U, V ) | U �1 V, and
I∗(U)�∗ I∗(V )};

4 G1 •G2 ← Gen((G1 ∩G∗) ∪G2) by Definition 3;
5 return G1 •G2.

defining �∗ as ∀U, V ∈ RW , U �∗ V if I(U) � I(V ).
Then G∗ can be computed by Theorem 4, and thus G1 • G2

can be obtained accordingly. Note that one can get Gen(�)
for some� by calculating the closure of� under (A1), (A3),
and (A4).

The following is an example of applying Algorithm 1 to
the revision scenario in Example 3.
Example 7. In Example 3, as Bob’s current belief corre-
sponds to a total preorder {ω1 ∼ ω2 ≺ ω3 ∼ ω4}, it can
be characterized as a CBA G1 = (2W ,�1), where

�1 = {(1, 3), (1, 4), (2, 3), (2, 4), (12, 3)(12, 4), (12, 34),

(13, 4), (14, 3), (23, 4), (24, 3), (123, 4), (124, 3)}
∪ Tr(W ).

Here for simplicity, we use a sequence of numbers i1i2 . . . ik
to represent the set of worlds {ωi1 , ωi2 . . . , ωik} (1 ≤
i1, . . . , ik ≤ 4). For example, (1, 3) represents ({ω1}, {ω3})
and (12, 3) represents ({ω1, ω2}, {ω3}). The new evidence µ
with worlds [µ] = {ω1, ω4} can be characterized as G2 =
(2W ,�2), where

�2= Gen({([µ], [¬µ])})
= {(14, 23), (14, 2), (14, 3), (142, 3), (143, 2)} ∪ Tr(W ).

Note that the backbone ofG2 is {ω1, ω4} �2 {ω2, ω3}. Then

Com(G2) = {(1, 2), (1, 3), (4, 2), (4, 3), (14, 23), (14, 2),

(14, 3), (12, 3), (13, 2), (24, 3), (34, 2),

(142, 3), (143, 2)} ∪ Tr(W ).

By Theorem 4, we know Λ(G1,Com(G2)) = {(1, 4), (2, 3)},
and

G∗ = Com(G1) • Com(G2)

=G1 • Com(G2) = Gen(Λ(G1,Com(G2)) ∪ Com(G2))

={(1, 4), (1, 2), (1, 3), (4, 2), (4, 3), (2, 3), (1, 24),

(1, 23), (1, 34), (1, 234), (4, 23), (14, 2), (14, 3), (14, 23),

(13, 4), (13, 2), (13, 24), (12, 3), (12, 4), (12, 34), (42, 3),

(43, 2), (123, 4), (124, 3), (134, 2)} ∪ Tr(W ).

Then the backbone of G∗ is {{ω1} �∗ {ω4} �∗ {ω2} �∗
{ω3}}, and G1 ∩G∗ is

G1 ∩G∗ = {(1, 3), (1, 4), (2, 3), (12, 3), (12, 4),

(12, 34), (13, 4), (14, 3), (24, 3), (123, 4), (124, 3)}
∪ Tr(W ).

Then

G1 •G2

= Gen({(1, 3), (1, 4), (2, 3), (12, 3), (12, 4), (12, 34),

(13, 4), (14, 3), (24, 3), (123, 4), (124, 3)} ∪G2)

= {(1, 2), (1, 3), (1, 4), (2, 3), (1, 23), (1, 24),

(1, 34), (1, 234), (12, 3), (12, 4), (12, 34), (13, 2),

(13, 4), (13, 24), (14, 2), (14, 3), (14, 23),

(24, 3), (123, 4), (124, 3)} ∪ Tr(W )

The backbone of G1 • G2 is ∆3 = {ω1} �3 {ω2, ω4} �3

{ω3}. It is not difficult to verify that G1 • G2 =
Gen(∆3 ∪ {(2, 3)}). Furthermore, G1 • G2 is also equal to
Gen({(1, 4), (1, 2), (1, 3), (2, 3)}). In other words, G1 • G2

is generated by {ω1 ≺ ω4, ω1 ≺ ω2, ω1 ≺ ω3, ω2 ≺ ω3}.
In Example 3, these orderings are exactly the part that must
be maintained under the DP framework. On the other hand,
if the new evidence is {µ, (¬b | ¬f)}, where [µ] = {ω1, ω4}
instead, then the revision result under the proposed frame-
work will be Gen({{ω1} � {ω4} � {ω2} � {ω3}}),
because (¬b | ¬f) will induce the preference information
{ω4} � {ω2}.

Now we return to the traditional belief revision setting,
where the current belief is represented as a total preorder �
on possible worlds, and the new evidence is a formula µ. This
revision setting can be viewed as revising a complete belief
algebra by a new belief algebra generated by the formula µ.
Suppose that • is the revision operator on BAL satisfying
(RA1)–(RA6). Then the revision process proceeds as fol-
lows:

• (Step 1) Represent � and µ by belief algebras. Let
G1 = (2W ,�1) be the corresponding complete belief
algebra of � i.e., ω ≺ ω′ iff {ω} �1 {ω′}. Similarly,
µ can be equivalently represented by Gµ = Gen(�µ:=
{([µ], [¬µ])}).

• (Step 2) Calculate G∗. Note that Com(Gµ) is equiva-
lent to a total preorder �µ s.t. ω ≺µ ω′ iff ω ∈ [µ]
and ω′ ∈ [¬µ]. Moreover, G∗ = G1 • Com(Gµ) is
also equivalent to a total preorder �∗. Following (RE1)-
(RE3) (by Corollary 3, (RA1)-(RA4) equivalently), we
can conclude that the strict part of �∗ is as follows.

– If ω1, ω2 ∈ [µ] then ω1 ≺∗ ω2 iff ω1 ≺ ω2.
– If ω1, ω2 ∈ [¬µ] then ω1 ≺∗ ω2 iff ω1 ≺ ω2.
– If ω1 ∈ [µ] and ω2 ∈ [¬µ] then ω1 ≺∗ ω2.

• (Step 3) Calculate G1 ∩G∗. From the result of last step,
we can see that

– If ω1, ω2 ∈ [µ], then ({ω1}, {ω2}) ∈ G1 ∩ G∗ iff
({ω1}, {ω2}) ∈ G1.

– If ω1, ω2 ∈ [¬µ], then ({ω1}, {ω2}) ∈ G1 ∩G∗ iff
({ω1}, {ω2}) ∈ G1.

– If ω1 ∈ [µ], ω2 ∈ [¬µ] and ({ω1}, {ω2}) ∈ G1,
then ({ω1}, {ω2}) ∈ G1 ∩G∗.

It should be noted that, the preferences on single worlds
in [µ] and [¬µ] remain unchanged after revision, and
ω ≺ ω′ in� is also maintained if ω ∈ [µ] and ω′ ∈ [¬µ].



• (Step 4) Calculate G1 • Gµ = Gen((G1 ∩ G∗) ∪ Gµ).
Then we get the revision result G1 •Gµ.

Remark 3. It is evident that the above revision process at-
tempts to preserve as much information from � as possible,
particularly those preferences consistent with [µ] � [¬µ].
This strategy aligns with the principles of the AGM and DP
frameworks. However, unlike these frameworks, the specific
preference relations to be preserved are determined by the up-
per bound G1 •Com(Gµ). Only those preferences consistent
with G1 •Com(Gµ) are included in the final result, and they
must be included. This is the reason why the revision operator
produces a unique result.

7.2 Discussion
Our iterative framework builds upon [Meng et al., 2015].
The belief algebra framework naturally extends to scenar-
ios where the agent’s beliefs are partial or incomplete. Un-
like total preorders, which require a complete ranking of all
worlds, belief algebras allow for the representation of pref-
erences over subsets of worlds, even when some preferences
are unspecified. This flexibility is particularly useful in real-
world applications where the agent may have limited or un-
certain information.

A key distinction with [Meng et al., 2015] is that we pro-
vide a deeper analysis of the structure of belief algebra and
introduce two core revision rules, (RA5) and (RA6). (RA5)
imposes a macro-level constraint on belief revision, ensuring
that the revision result does not exceed the outcome under
complete information when belief information is insufficient.
(RA6), on the other hand, requires preserving as much of
the original belief information as possible under these con-
straints. Interestingly, these rules induce a unique revision
result. Under our framework, agents with the same belief al-
gebra and evidence will produce identical revision outcomes.
While traditional views attribute different revision results to
varying operators, we argue that rational agents share highly
similar revision operators, and differences arise from their
distinct belief algebras.

8 Conclusion
In this paper, we proposed an iterated belief revision frame-
work based on belief algebra where the current belief state,
new evidence, and revision results are all represented as belief
algebras. Through a deep analysis of the structure of belief
algebra and inspired by existing principles of belief revision,
we devised natural postulates for rational revision behaviors,
including (RA5), which imposes an upper-bound constraint
on revision results, ensuring that no revision exceeds the out-
come under complete information, and (RA6), which requires
preserving as much of the original belief information as possi-
ble while satisfying the upper-bound constraint. Interestingly,
these postulates induce a unique revision operator, provid-
ing a deterministic and principled approach to belief revision.
This uniqueness offers a clear guideline for selecting specific
revision operators in practical applications.

Moreover, we developed a practical revision algorithm un-
der the new framework, demonstrating its feasibility for real-
world use. In future work, we aim to explore efficient meth-

ods for representing original belief information (e.g., logical
statements or preferences) as belief algebra. Additionally, we
will focus on improving the efficiency of our algorithm, re-
ducing its complexity (currently, it is exponential to the num-
ber of worlds), and testing its application in specific domains,
such as knowledge or rule revision in large language models.
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